Uniqueness and robustness of solution of measure-valued equations of nonlinear filtering

被引:25
作者
Bhatt, AG [1 ]
Kallianpur, G [1 ]
Karandikar, RL [1 ]
机构
[1] UNIV N CAROLINA, DEPT STAT, CTR STOCHAST PROC, CHAPEL HILL, NC 27599 USA
关键词
nonlinear filtering; Zakai equation; martingale problem; robustness;
D O I
10.1214/aop/1176987808
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the Zakai equation for the unnormalized conditional distribution sigma when the signal process X takes values in a complete separable metric space E and when h is a continuous, possibly unbounded function on E. It is assumed that X is a Markov process which is characterized via a martingale problem for an operator A(0). Uniqueness of solution for the measure-valued Zakai and Fujisaki-Kallianpur-Kunita equations is proved when the test functions belong to the domain of A(0). It is also shown that the conditional distributions are robust.
引用
收藏
页码:1895 / 1938
页数:44
相关论文
共 38 条
[1]  
AHMED NU, 1994, 522 POL AC SCI I MAT
[2]  
[Anonymous], 1992, ENCY MATH ITS APPL
[3]  
[Anonymous], 1980, STOCHASTIC FILTERING
[4]   EXISTENCE, UNIQUENESS, AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS TO A CLASS OF ZAKAI EQUATIONS WITH UNBOUNDED COEFFICIENTS [J].
BARAS, JS ;
BLANKENSHIP, GL ;
HOPKINS, WE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (02) :203-214
[5]   INVARIANT-MEASURES AND EVOLUTION-EQUATIONS FOR MARKOV-PROCESSES CHARACTERIZED VIA MARTINGALE PROBLEMS [J].
BHATT, AG ;
KARANDIKAR, RL .
ANNALS OF PROBABILITY, 1993, 21 (04) :2246-2268
[6]  
BHATT AG, 1993, APPL MATH OPT, V31, P327
[7]  
BHATT AG, 1995, IN PRESS APPL MATH O
[8]  
CHALEYAT-MAUREL M., 1990, STOCHASTICS, V29, P1
[9]  
Dellacherie C., 1978, PROBABILITIES POTENT
[10]  
DIMASI GB, 1982, LECT NOTES MATH, V972, P249