Discrete Time Optimal Stopping Problems with Fractional Rewards

被引:2
作者
Tanaka, Teruo [1 ]
机构
[1] Hiroshima City Univ, Grad Sch Informat Sci, Dept Syst Engn, Asaminami Ku, 3-4-1,Ozukahigashi, Hiroshima, Japan
关键词
optimal stopping; multiple stopping; fractional reward; epsilon-optimal stopping; monotone case;
D O I
10.1080/02522667.2013.821777
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
In this paper, to the first, we give the general formulation of a discrete time optimal stopping problem under the criterion of a fractional reward. Using the standard mathematical argument in the theory of mathematical programming, we prove the existence of optimal stopping times for this problem. Furthermore we discuss f-optimal stopping times, finite stopping times, and Markov case, respectively. To the next, we give the formulation of new stopping problems which combined the discrete time multiple stopping problem and the criterion of a fractional reward, and then prove the existence of optimal stopping times for this problem.
引用
收藏
页码:291 / 306
页数:16
相关论文
共 50 条
  • [21] Pathwise Optimization for Optimal Stopping Problems
    Desai, Vijay V.
    Farias, Vivek F.
    Moallemi, Ciamac C.
    MANAGEMENT SCIENCE, 2012, 58 (12) : 2292 - 2308
  • [23] OPTIMAL STOPPING PROBLEMS FOR ASSET MANAGEMENT
    Dayanik, Savas
    Egami, Masahiko
    ADVANCES IN APPLIED PROBABILITY, 2012, 44 (03) : 655 - 677
  • [24] Discrete-type Approximations for Non-Markovian Optimal Stopping Problems: Part II
    Bezerra, Sergio C.
    Ohashi, Alberto
    Russo, Francesco
    de Souza, Francys
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2020, 22 (03) : 1221 - 1255
  • [25] Discrete-type approximations for non-Markovian optimal stopping problems: Part I
    Leao, Dorival
    Ohashi, Alberto
    Russo, Francesco
    JOURNAL OF APPLIED PROBABILITY, 2019, 56 (04) : 981 - 1005
  • [26] Discrete-type Approximations for Non-Markovian Optimal Stopping Problems: Part II
    Sérgio C. Bezerra
    Alberto Ohashi
    Francesco Russo
    Francys de Souza
    Methodology and Computing in Applied Probability, 2020, 22 : 1221 - 1255
  • [27] Stochastic Mesh Method for Optimal Stopping Problems
    Kashtanov, Yu. N.
    Fedyaev, I. P.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2020, 53 (03) : 287 - 294
  • [28] Dynamic survival bias in optimal stopping problems
    Chen, Wanyi
    JOURNAL OF ECONOMIC THEORY, 2021, 196
  • [29] Linear programming formulation for optimal stopping problems
    Cho, MJ
    Stockbridge, RH
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (06) : 1965 - 1982
  • [30] Asymptotic Duration for Optimal Multiple Stopping Problems
    Entwistle, Hugh N.
    Lustri, Christopher J.
    Sofronov, Georgy Yu.
    MATHEMATICS, 2024, 12 (05)