FRACTAL SPECTRUM AND ANOMALOUS DIFFUSION IN THE KICKED HARPER MODEL

被引:74
作者
ARTUSO, R
CASATI, G
SHEPELYANSKY, D
机构
[1] NATL INST NUCL PHYS,MILAN,ITALY
[2] IST NAZL FIS NUCL,I-22100 COMO,ITALY
[3] UNIV TOULOUSE 3,PHYS QUANT LAB,F-31062 TOULOUSE,FRANCE
[4] UNIV COMO,DIPARTIMENTO FIS,I-22100 COMO,ITALY
关键词
D O I
10.1103/PhysRevLett.68.3826
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a kicked system on the cylinder obtained upon quantization of a chaotic area-preserving map. We use the thermodynamic formalism to investigate the scaling properties of the fractal spectrum. In time evolution we observe anomalous diffusion with an exponent closely related to the Hausdorff dimension of the spectrum, and dependent upon the parameters of the system.
引用
收藏
页码:3826 / 3829
页数:4
相关论文
共 32 条
  • [1] [Anonymous], 1983, PHASE TRANSITIONS CR
  • [2] RECYCLING OF STRANGE SETS .2. APPLICATIONS
    ARTUSO, R
    AURELL, E
    CVITANOVIC, P
    [J]. NONLINEARITY, 1990, 3 (02) : 361 - 386
  • [3] LOGARITHMIC STRANGE SETS
    ARTUSO, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (19): : L923 - L927
  • [4] PHASE-TRANSITIONS ON STRANGE IRRATIONAL SETS
    ARTUSO, R
    CVITANOVIC, P
    KENNY, BG
    [J]. PHYSICAL REVIEW A, 1989, 39 (01) : 268 - 281
  • [5] ARTUSO R, IN PRESS
  • [6] AUBRY S, 1979, P ISRAEL PHYSICAL SO, V3, P133
  • [7] BELLISSARD J, IN PRESS QUANTUM CHA
  • [8] ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS
    BENZI, R
    PALADIN, G
    PARISI, G
    VULPIANI, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18): : 3521 - 3531
  • [9] HYDROGEN-ATOM IN MONOCHROMATIC-FIELD - CHAOS AND DYNAMICAL PHOTONIC LOCALIZATION
    CASATI, G
    GUARNERI, I
    SHEPELYANSKY, DL
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24 (07) : 1420 - 1444
  • [10] Casati G., 1979, LECTURE NOTES PHYSIC, V93, P334, DOI DOI 10.1007/BFB0021757