REACTIONS OF NO, O2, H2O, AND CO2 WITH THE BASAL-PLANE OF GRAPHITE

被引:89
|
作者
CHU, X [1 ]
SCHMIDT, LD [1 ]
机构
[1] UNIV MINNESOTA,DEPT CHEM ENGN & MAT SCI,MINNEAPOLIS,MN 55455
关键词
D O I
10.1016/0039-6028(92)90972-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reactions of NO, O2, H2O, and CO2 with graphite between 400 and 900-degrees-C have been studied by STM to obtain quantitative kinetics by measuring the number and size of monolayers pits on the basal plane versus temperature and time. At low temperature, reactions initiate exclusively from point defect sites on the basal plane of graphite, forming circular or hexagonal pits one monolayer deep of uniform radius which varies linearly with time and can be used to obtain quantitative kinetics. The activation energies of the monolayer reactions on graphite vary from 89 kJ/mol with NO to 205 kJ/mol with H2O. At higher temperature, these gases also react with carbon atoms in the basal plane, creating new defect sites which nucleate monolayer pit formation. This was examined quantitatively by counting the number of pits versus time and temperature. Activation energies of basal plane attack vary from 164 kJ/mol with NO to 370 kJ/mol with H2O.
引用
收藏
页码:325 / 332
页数:8
相关论文
共 50 条
  • [1] The reactions of FeO with O3, H2, H2O, O2 and CO2
    Rollason, RJ
    Plane, JMC
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (10) : 2335 - 2343
  • [2] Preheating and combustion characteristics of anthracite under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres
    Zhang, Xiaoyu
    Zhu, Shujun
    Zhu, Jianguo
    Liu, Yuhua
    Zhang, Jiahang
    Hui, Jicheng
    Ding, Hongliang
    Cao, Xiaoyang
    Lyu, Qinggang
    ENERGY, 2023, 274
  • [3] THE ADSORPTION AND CATALYZED-REACTIONS OF CO, CO2 AND H2O ON GRAPHITE SURFACES
    TYSOE, WT
    CARRAZZA, J
    SOMORJAI, GA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1984, 187 (APR): : 41 - FUEL
  • [4] ELECTRON ATTACHMENT AND DETACHMENT .2. MIXTURES OF O2 AND CO2 AND OF O2 AND H2O
    PACK, JL
    PHELPS, AV
    JOURNAL OF CHEMICAL PHYSICS, 1966, 45 (11): : 4316 - &
  • [5] Comparison of the characteristics and mechanism of CO formation in O2/N2, O2/CO2 and O2/H2O atmospheres
    He, Yizhuo
    Zou, Chun
    Song, Yu
    Luo, Jianghui
    Jia, Huiqiao
    Chen, Wuzhong
    Zheng, Junmei
    Zheng, Chuguang
    ENERGY, 2017, 141 : 1429 - 1438
  • [6] Comparison of the Reburning Chemistry in O2/N2, O2/CO2, and O2/H2O Atmospheres
    He, Yizhuo
    Luo, Jianghui
    Li, Yangguang
    Jia, Huiqiao
    Wang, Feng
    Zou, Chun
    Zheng, Chuguang
    ENERGY & FUELS, 2017, 31 (10) : 11404 - 11412
  • [7] AES STUDY OF THE ADSORPTION OF O2, CO, CO2, AND H2O ON INDIUM
    ROSSNAGEL, SM
    DYLLA, HF
    COHEN, SA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1979, 16 (02): : 558 - 561
  • [8] Effects of O2, CO2 and H2O on the Adsorption of NO on Cerium Oxide
    Yoshikawa, Kohei
    Aoyagi, Takuya
    Onodera, Taigo
    Takahashi, Eri
    Naito, Takashi
    Miyake, Tatsuya
    Kondo, Junko Nomura
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2020, 63 (03) : 158 - 162
  • [9] A comparative study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O
    Tu, Yaojie
    Yang, Wenming
    Siah, Keng Boon
    Prabakaran, Subbaiah
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 1473 - 1478
  • [10] Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic-martensitic and austenitic steels
    Huenert, D.
    Kranzmann, A.
    CORROSION SCIENCE, 2011, 53 (06) : 2306 - 2317