VOLTERRA AND OTHER NONLINEAR MODELS OF INTERACTING POPULATIONS

被引:519
|
作者
GOEL, NS
MAITRA, SC
MONTROLL, EW
机构
关键词
D O I
10.1103/RevModPhys.43.231
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:231 / +
页数:1
相关论文
共 50 条
  • [41] Nonlinear mating models for populations with discrete generations
    Castillo-Chavez, C
    Yakubu, AA
    Thieme, H
    Martcheva, M
    MATHEMATICAL APPROACHES FOR EMERGING AND REEMERGING INFECTIOUS DISEASES: AN INTRODUCTION, 2002, 125 : 251 - 268
  • [42] Nonlinear system modeling and identification using Volterra-PARAFAC models
    Favier, Gerard
    Kibangou, Alain Y.
    Bouilloc, Thomas
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2012, 26 (01) : 30 - 53
  • [43] Methods of quantifying interactions among populations using Lotka-Volterra models
    Davis, Jacob D.
    Olivenca, Daniel V.
    Brown, Sam P.
    Voit, Eberhard O.
    FRONTIERS IN SYSTEMS BIOLOGY, 2022, 2
  • [44] Improved Nonlinear Model Predictive Control with Volterra-Laguerre Models
    Stoddard, Jeremy G.
    Welsh, James S.
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 1014 - 1019
  • [45] Ratio-Dependent Predator-Prey Models of Interacting Populations
    Mainul Haque
    Bulletin of Mathematical Biology, 2009, 71 : 430 - 452
  • [46] Recurrent Switching Dynamical Systems Models for Multiple Interacting Neural Populations
    Glaser, Joshua I.
    Whiteway, Matthew
    Cunningham, John P.
    Paninski, Liam
    Linderman, Scott W.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [47] Upscaling from discrete to continuous mathematical models of two interacting populations
    Prieto-Langarica, Alicia
    Kojouharov, Hristo V.
    Chen-Charpentier, Benito M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (09) : 1606 - 1612
  • [48] Ratio-Dependent Predator-Prey Models of Interacting Populations
    Haque, Mainul
    BULLETIN OF MATHEMATICAL BIOLOGY, 2009, 71 (02) : 430 - 452
  • [49] The evolutionary limit for models of populations interacting competitively via several resources
    Champagnat, Nicolas
    Jabin, Pierre-Emmanuel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (01) : 176 - 195
  • [50] SPIRAL WAVES, CHAOS AND MULTIPLE ATTRACTORS IN LATTICE MODELS OF INTERACTING POPULATIONS
    SOLE, RV
    VALLS, J
    BASCOMPTE, J
    PHYSICS LETTERS A, 1992, 166 (02) : 123 - 128