VOLTERRA AND OTHER NONLINEAR MODELS OF INTERACTING POPULATIONS

被引:519
|
作者
GOEL, NS
MAITRA, SC
MONTROLL, EW
机构
关键词
D O I
10.1103/RevModPhys.43.231
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:231 / +
页数:1
相关论文
共 50 条
  • [21] Nonlinear Travelling Waves in a Generalized Model of Interacting Dense Populations
    Jordanov, Ivan P.
    Vitanov, Nilolay K.
    Nikolova, Elena, V
    SEVENTH INTERNATIONAL CONFERENCE ON NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2020), 2021, 2321
  • [22] Advances in Identification and Compensation of Nonlinear Systems by Adaptive Volterra Models
    Zeller, Marcus
    Kellermann, Walter
    2010 CONFERENCE RECORD OF THE FORTY FOURTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2010, : 1940 - 1944
  • [23] Nonlinear System Identification Based on Reduced Complexity Volterra Models
    Jin, Guodong
    Lu, Libin
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ELECTRONICS, MECHANICS, CULTURE AND MEDICINE, 2016, 45 : 475 - 479
  • [24] Efficient Computation of Bilinear Approximations and Volterra Models of Nonlinear Systems
    Seymour Burt, Phillip Mark
    Goulart, Jose Henrique de Morais
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (03) : 804 - 816
  • [25] Stable self-oscillatory regimes in Volterra models of three populations
    Buriev, TE
    Ergashev, VE
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2000, : 81 - 85
  • [26] Equalization Control of Nonlinear Systems by Discrete Models of the Volterra Operators
    Vazquez, Juan Alejandro
    Morales, Sarahi
    Marquet, Rodrigo Arturo
    Navarro, Jose
    Urriolagoitia, Guillermo
    Romero, Beatriz
    COMPUTACION Y SISTEMAS, 2022, 26 (04): : 1445 - 1457
  • [27] Nonlinear responses in fMRI: The balloon model, volterra kernels, and other hemodynamics
    Friston, KJ
    Mechelli, A
    Turner, R
    Price, CJ
    NEUROIMAGE, 2000, 12 (04) : 466 - 477
  • [28] Non-local interaction effects in models of interacting populations
    Simoy, Mario I.
    Kuperman, Marcelo N.
    CHAOS SOLITONS & FRACTALS, 2023, 167
  • [29] STABILITY IN A CLASS OF DISCRETE-TIME MODELS OF INTERACTING POPULATIONS
    FISHER, ME
    GOH, BS
    JOURNAL OF MATHEMATICAL BIOLOGY, 1977, 4 (03) : 265 - 274
  • [30] ANALYSIS OF SI MODELS WITH MULTIPLE INTERACTING POPULATIONS USING SUBPOPULATIONS
    Thomas, Evelyn K.
    Gurski, Katharine F.
    Hoffman, Kathleen A.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2015, 12 (01) : 135 - 161