AN IDENTITY IN COMBINATORIAL EXTREMAL THEORY

被引:29
作者
AHLSWEDE, R
ZHANG, Z
机构
[1] Universität Bielefeld, Fakultät für Mathematik, 4800 Bielefeld 1
关键词
D O I
10.1016/0001-8708(90)90023-G
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main discovery is the following identity: For every family A ⊂ 2Ω of non-empty subsets of Ω = {1, 2, ..., n} ∑ X⊂ω WA(X) ∥X∥( n X)≡1 where WA(X)=| {n-ary intersection} X⊃Aε{lunate}AA|. It can be viewed as a sharpening of the famous LYM-inequality. We present also generalizations to other posets. The total impact for combinatorics remains to be explored. The identity seems to be particularly useful for uniqueness proofs in Sperner Theory. We also discuss a geometric consequence. © 1990.
引用
收藏
页码:137 / 151
页数:15
相关论文
共 14 条
[1]  
ANDERSON I, 1986, COMBINATORICS FINITE
[2]  
BERGMANN EE, BALANCING SETS VECTO
[3]   ON GENERALIZED GRAPHS [J].
BOLLOBAS, B .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1965, 16 (3-4) :447-&
[4]  
BOLLOBAS B, 1985, COMBINATORICS
[5]   INEQUALITIES FOR SUBSETS OF A SET AND KLYM POSETS [J].
DAYKIN, DE ;
FRANKL, P .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (01) :67-69
[6]  
ENGEL K, 1985, TEXTE MATH, V78
[7]  
Greene C., 1978, MAA STUDIES MATH, V17, P22
[8]   A SPERNER THEOREM ON UNRELATED CHAINS OF SUBSETS [J].
GRIGGS, JR ;
STAHL, J ;
TROTTER, WT .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1984, 36 (01) :124-127
[9]  
Kraft L. G., 1949, THESIS MIT
[10]  
Lubell D., 1966, J COMBIN THEORY, V1, P299, DOI [DOI 10.1016/S0021-9800(66)80035-2, 10.1016/S0021-9800(66)80035-2]