FRACTAL DESCRIPTIONS FOR SPATIAL STATISTICS

被引:24
作者
KING, RB [1 ]
WEISSMAN, LJ [1 ]
BASSINGTHWAIGHTE, JB [1 ]
机构
[1] UNIV WASHINGTON,CTR BIOENGN,WD-12,SEATTLE,WA 98195
关键词
Chaos; Heterogeneity; Nearest neighbor distances; Regional blood flow; Spatial correlation; Vascular branching;
D O I
10.1007/BF02368424
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Measures of spatial statistics have been available for estimating means, calculating or assessing differences, estimating nearest neighbor distances, and such, but have not provided a general approach to describing variances. Because measures of heterogeneity depend upon choosing a particular element size in the domain, estimates of apparent heterogeneity are larger with high-resolution observations than with low-resolution data. Many descriptors might be used to describe the relationships between apparent heterogeneity and the size of the observed spatial elements, but we have found that fractal relationships provide concise and precise descriptions of many types of data over large ranges of element sizes. Perhaps more importantly, the fractal approaches give additional insight, such as measures of spatial correlation, and often suggest ways of approaching the underlying basis of the heterogeneity. © 1990 Pergamon Press plc.
引用
收藏
页码:111 / 121
页数:11
相关论文
共 11 条