Multi-Logarithmic Differential Forms on Complete Intersections

被引:0
作者
Aleksandrov, Alexandr G. [1 ]
Tsikh, Avgust K. [2 ]
机构
[1] Russian Acad Sci, Inst Control Sci, Profsoyuznaya 65, Moscow 117997, Russia
[2] Siberian Fed Univ, Inst Math, Krasnoyarsk 660041, Russia
来源
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS | 2008年 / 1卷 / 02期
关键词
complete intersection; multi-logarithmic differential forms; regular meromorphic differential forms; Poincare residue; logarithmic residue; Grothendieck duality; residue current;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a complex Omega(.)(S)(log C) of sheaves of multi-logarithmic differential forms on a complex analytic manifold S with respect to a reduced complete intersection C subset of S; and define the residue map as a natural morphism from this complex onto the Barlet complex omega(.)(C) of regular meromorphic differential forms on C. It follows then that sections of the Barlet complex can be regarded as a generalization of the residue differential forms defined by Leray. Moreover, we show that the residue map can be described explicitly in terms of certain integration current.
引用
收藏
页码:105 / 124
页数:20
相关论文
共 28 条
[11]   VARIATIONS ON A THEOREM OF ABEL [J].
GRIFFITHS, PA .
INVENTIONES MATHEMATICAE, 1976, 35 :321-390
[12]   Abelian differentials on singular varieties and variations on a theorem of Lie-Griffiths [J].
Henkin, G ;
Passare, M .
INVENTIONES MATHEMATICAE, 1999, 135 (02) :297-328
[13]   REGULAR DIFFERENTIAL FORMS [J].
KERSKEN, M .
MANUSCRIPTA MATHEMATICA, 1984, 46 (1-3) :1-25
[14]   HOLOMORPHIC DIFFERENTIAL FORMS ON ALGEBRAIC VARIETIES WITH SINGULARITIES 1 [J].
KUNZ, E .
MANUSCRIPTA MATHEMATICA, 1975, 15 (01) :91-108
[15]   RESIDUES OF DIFFERENTIAL FORMS ON COHEN-MACAULEY VARIETIES [J].
KUNZ, E .
MATHEMATISCHE ZEITSCHRIFT, 1977, 152 (02) :165-189
[16]  
Leray J., 1959, B SOC MATH FR, V87, P81
[17]   RESIDUES, CURRENTS, AND THEIR RELATION TO IDEALS OF HOLOMORPHIC-FUNCTIONS [J].
PASSARE, M .
MATHEMATICA SCANDINAVICA, 1988, 62 (01) :75-152
[18]  
PETERS C, 1983, CLASSIFICATION ALGEB, P399
[19]  
Poincar? H., 1887, ACTA MATH, V6, P321, DOI 10.1007/BF02406742
[20]  
Poly J-B., 1972, CR ACAD SCI A B, V274, pA171