Multi-Logarithmic Differential Forms on Complete Intersections

被引:0
作者
Aleksandrov, Alexandr G. [1 ]
Tsikh, Avgust K. [2 ]
机构
[1] Russian Acad Sci, Inst Control Sci, Profsoyuznaya 65, Moscow 117997, Russia
[2] Siberian Fed Univ, Inst Math, Krasnoyarsk 660041, Russia
来源
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS | 2008年 / 1卷 / 02期
关键词
complete intersection; multi-logarithmic differential forms; regular meromorphic differential forms; Poincare residue; logarithmic residue; Grothendieck duality; residue current;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a complex Omega(.)(S)(log C) of sheaves of multi-logarithmic differential forms on a complex analytic manifold S with respect to a reduced complete intersection C subset of S; and define the residue map as a natural morphism from this complex onto the Barlet complex omega(.)(C) of regular meromorphic differential forms on C. It follows then that sections of the Barlet complex can be regarded as a generalization of the residue differential forms defined by Leray. Moreover, we show that the residue map can be described explicitly in terms of certain integration current.
引用
收藏
页码:105 / 124
页数:20
相关论文
共 28 条
[1]  
Aleksandrov A. G., 1990, ADV SOVIET MATH, V1, P211
[2]  
Barlet D., 1976, C R ACAD SCI PARIS A, V282, pA579
[3]  
Barlet D, 1978, LECT NOTES MATH, V670, P187
[4]  
Buchsbaum D.A., 1964, T AM MATH SOC, V111, P197
[5]  
COLEFF NR, 1978, LECT NOTES MATH, V633
[6]   FORMES DIFFERENTIELLES ET COHOMOLOGIE SUR UNE VARIETE ANALYTIQUE COMPLEXE .2. [J].
DOLBEAULT, P .
ANNALS OF MATHEMATICS, 1957, 65 (02) :282-330
[7]  
Dolbeault P., 1972, FONCTIONS ANALYTIQUE, V208, P35
[8]   On torsion of (partial derivative)-closed currents on complex analytic spaces [J].
El Haouzi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (03) :205-208
[9]  
GRAUERT H, 1984, GRUNDLEHREN MATH WIS, P00265
[10]  
Griffiths P., 1978, PRINCIPLES ALGEBRAIC