ON THE SYMMETRY CLASSIFICATION OF THE 4-DIMENSIONAL PARALLELOHEDRA

被引:7
作者
ENGEL, P
机构
[1] Laboratory of Crystallography, University of Berne, CH-3012 Berne
来源
ZEITSCHRIFT FUR KRISTALLOGRAPHIE | 1992年 / 200卷 / 3-4期
关键词
4-DIMENSIONAL PARALLELOHEDRA; DIRICHLET-PARALLELOHEDRON;
D O I
10.1524/zkri.1992.200.3-4.199
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
A complete description of the 52 combinatorial types of parallelohedra in Euclidean space E4 is presented, and for each type a realization through a Dirichlet parallelohedron having maximal symmetry is given. The cone of four-dimensional positive-definite quadratic forms is subdivided into existence fields of symmetry types of parallelohedra. Complete results are given for metric tensors with one, two, and three free parameters.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 11 条
  • [1] ON COMBINATORIAL AND AFFINE AUTOMORPHISMS OF POLYTOPES
    BOKOWSKI, J
    EWALD, G
    KLEINSCHMIDT, P
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1984, 47 (2-3) : 123 - 130
  • [2] Brown H., 1978, CRYSTALLOGRAPHIC GRO
  • [3] Delaunay B, 1932, Z KRISTALLOGR, V84, P109
  • [4] DELAUNAY BN, 1929, IZV AKAD NAUK SSSR O, P79
  • [5] THE ENUMERATION OF 4-DIMENSIONAL POLYTOPES
    ENGEL, P
    [J]. DISCRETE MATHEMATICS, 1991, 91 (01) : 9 - 31
  • [6] Engel P., 1986, GEOMETRIC CRYSTALLOG
  • [7] FEDOROV ES, 1885, OBSCESTVA, V21, P1
  • [8] FEDOROV ES, 1900, ABH BAYER AKAD WISS, V20, P465
  • [9] Fedorow E.V., 1896, Z KRISTALLOGR, V25, P113
  • [10] STOGRIN MI, 1973, P STEKLOV I MATH, V123