Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities

被引:33
作者
van Bergen, Christiaan J. A. [1 ]
Gerards, Rogier M. [1 ]
Opdam, Kim T. M. [1 ]
Terra, Maaike P. [2 ]
Kerkhoffs, Gino M. M. J. [1 ]
机构
[1] Acad Med Ctr, Dept Orthoped Surg, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
[2] Acad Med Ctr, Dept Radiol, NL-1105 AZ Amsterdam, Netherlands
关键词
Cartilage; Subchondral bone; Imaging; Ankle; Talus; Radiography; Computed tomography; Magnetic resonance imaging; Outcome assessment;
D O I
10.5312/wjo.v6.i11.944
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
This current concepts review outlines the role of different imaging modalities in the diagnosis, preoperative planning, and follow-up of osteochondral ankle defects. An osteochondral ankle defect involves the articular cartilage and subchondral bone (usually of the talus) and is mostly caused by an ankle supination trauma. Conventional radiographs are useful as an initial imaging tool in the diagnostic process, but have only moderate sensitivity for the detection of osteochondral defects. Computed tomography (CT) and magnetic resonance imaging (MRI) are more accurate imaging modalities. Recently, ultrasonography and single photon emission CT have been described for the evaluation of osteochondral talar defects. CT is the most valuable modality for assessing the exact location and size of bony lesions. Cartilage and subchondral bone damage can be visualized using MRI, but the defect size tends to be overestimated due to bone edema. CT with the ankle in full plantar flexion has been shown a reliable tool for preoperative planning of the surgical approach. Postoperative imaging is useful for objective assessment of repair tissue or degenerative changes of the ankle joint. Plain radiography, CT and MRI have been used in outcome studies, and different scoring systems are available.
引用
收藏
页码:944 / 953
页数:10
相关论文
共 60 条
[1]   Arthroscopic Treatment of Osteochondral Lesions of the Ankle With Matrix-Associated Chondrocyte Implantation Early Clinical and Magnetic Resonance Imaging Results [J].
Aurich, Matthias ;
Bedi, Harvinder S. ;
Smith, Peter J. ;
Rolauffs, Bernd ;
Mueckley, Thomas ;
Clayton, James ;
Blackney, Mark .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2011, 39 (02) :311-319
[2]   Delayed diagnosis of a pseudoaneurysm with recurrent hemarthrosis of the knee joint [J].
Becher, Christoph ;
Burger, Ulrike L. ;
Allenberg, Jens R. ;
Kaufmann, Guenter W. ;
Thermann, Hajo .
KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2008, 16 (06) :561-564
[3]  
Burstein D, 2001, MAGNET RESON MED, V45, P36, DOI 10.1002/1522-2594(200101)45:1<36::AID-MRM1006>3.0.CO
[4]  
2-W
[5]   MR Arthrography of the Ankle: Indications and Technique [J].
Cerezal, Luis ;
Llopis, Eva ;
Canga, Ana ;
Rolon, Alejandro .
RADIOLOGIC CLINICS OF NORTH AMERICA, 2008, 46 (06) :973-+
[6]  
DeSmet AA, 1996, SKELETAL RADIOL, V25, P159
[7]   Cartilage repair of the ankle: first results of T2 mapping at 7.0 T after microfracture and matrix associated autologous cartilage transplantation [J].
Domayer, S. E. ;
Apprich, S. ;
Stelzeneder, D. ;
Hirschfeld, C. ;
Sokolowski, M. ;
Kronnerwetter, C. ;
Chiari, C. ;
Windhager, R. ;
Trattnig, S. .
OSTEOARTHRITIS AND CARTILAGE, 2012, 20 (08) :829-836
[8]   OSTEOCHONDRITIS DISSECANS OF THE TALUS (TRANSCHONDRAL FRACTURES OF THE TALUS) - REVIEW OF THE LITERATURE AND NEW SURGICAL APPROACH FOR MEDIAL DOME LESIONS [J].
FLICK, AB ;
GOULD, N .
FOOT & ANKLE, 1985, 5 (01) :165-185
[9]   New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging [J].
Glaser, C .
RADIOLOGIC CLINICS OF NORTH AMERICA, 2005, 43 (04) :641-+
[10]   Osteochondral lesions of the talus ASPECTS OF CURRENT MANAGEMENT [J].
Hannon, C. P. ;
Smyth, N. A. ;
Murawski, C. D. ;
Savage-Elliott, I. ;
Deyer, T. W. ;
Calder, J. D. F. ;
Kennedy, J. G. .
BONE & JOINT JOURNAL, 2014, 96B (02) :164-171