Both brush border and basolateral membrane vesicles were prepared from rat kidney by Percoll gradient centrifugation. The addition of mercuric chloride (100 nm) to vesicles prepared from healthy, male, Sprague-Dawley rats reduced p-aminohippurate (PAH) transport by basolateral vesicles. No effect was observed on glucose transport by brush border vesicles even at mercuric chloride concentrations as high as 10 μm. However, when the metal salt was added in the presence of 5% bovine serum albumin, basolateral PAH transport was unaffected. Transport studies also were done with vesicles isolated from rats pretreated with mercuric chloride (4 mg/kg, sc). Transport of PAH was unaffected at all times studied. Glucose transport was unaffected at 1 and 3 hr, but at 16 hr was reduced significantly. By 48 hr, brush border glucose transport had recovered. These data demonstrate that mercuric chloride can alter renal membrane function, and that the effects depend on the membrane vesicle population used. With pretreatment studies, the time after treatment also influences whether or not an effect is seen. © 1990.