Small gaps Fourier series and generalized variations

被引:1
|
作者
Vyas, Rajendra G. [1 ]
机构
[1] Maharaja Sayajirao Univ Baroda, Dept Math, Fac Sci, Vadodara 390002, Gujarat, India
关键词
Fourier series with small gaps; Fourier coefficients; Lambda BV ( p (n) up arrow infinity ); beta-absolute convergence of Fourier series;
D O I
10.1515/apam-2012-0002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose f is an element of L [-pi , pi] has a Fourier series Sigma (infinity)(k) = -infinity (f) over cap (n(k) ) ei(nkx) (n(-k) = -n(k)) with small gaps n(k+1) - n(k) >= q 1 for all k >= 0. Here, by applying the Wiener-Ingham result for finite trigonometric sum with 'small' gaps, we estimate the order of magnitude of tPhe Fourier coefficients and obtain a sufficient condition for the convergence of the series Sigma(k is an element of z) vertical bar (f) over cap (n(k)) vertical bar(beta) (0 < beta <= 2 ) if f is locally of class Lambda BV (P (n)) up arrow infinity, phi).
引用
收藏
页码:223 / 230
页数:8
相关论文
共 50 条
  • [1] Generalized Absolute Convergence of Series of Fourier Coefficients With Respect to Haar Type Systems
    Volosivets S.S.
    Golubov B.I.
    Russian Mathematics, 2018, 62 (1) : 7 - 16
  • [2] On the gaps in the Fourier expansion of cusp forms
    Alkan, Emre
    Zaharescu, Alexandru
    RAMANUJAN JOURNAL, 2008, 16 (01) : 41 - 52
  • [3] On the gaps in the Fourier expansion of cusp forms
    Emre Alkan
    Alexandru Zaharescu
    The Ramanujan Journal, 2008, 16
  • [4] On Universal Fourier–Walsh Series
    A. A. Sargsyan
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2025, 60 (2): : 96 - 103
  • [5] Summability of general Fourier series
    Gogoladze, Larry
    Tsagareishvili, Vakhtang
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 91 (3-4): : 391 - 402
  • [6] Generalized Lipschitz classes and Fourier coefficients
    Tikhonov, SY
    MATHEMATICAL NOTES, 2004, 75 (5-6) : 885 - 889
  • [7] Generalized Lipschitz Classes and Fourier Coefficients
    S. Yu. Tikhonov
    Mathematical Notes, 2004, 75 : 885 - 889
  • [8] Fourier Series in Weighted Lorentz Spaces
    Rastegari, Javad
    Sinnamon, Gord
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (05) : 1192 - 1223
  • [9] Algorithmic Approach for Formal Fourier Series
    Koepf, Wolfram
    Chiadjeu, Etienne Nana
    MATHEMATICS IN COMPUTER SCIENCE, 2015, 9 (03) : 365 - 389
  • [10] Unconditional Convergence of General Fourier Series
    Gogoladze, L.
    Tsagareishvili, V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 319 (01) : 74 - 84