GENERALIZED LAX PAIRS, THE MODIFIED CLASSICAL YANG-BAXTER EQUATION, AND AFFINE GEOMETRY OF LIE-GROUPS

被引:70
作者
BORDEMANN, M
机构
[1] Fakultät für Physik der Universität Freiburg, Freiburg i. Br., W-7800
关键词
D O I
10.1007/BF02097662
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the usual Lax equation (GRAPHICS) where rho is an arbitrary representation of a Lie algebra g (the values of M) in a representation space V (the values of L). The usual classical r-matrix programme for Hamiltonian integrable systems is generalized to r-matrices taking values in g X V. The r-matrices are then considered as left invariant torsion-free covariant derivatives on a Lie group K (with Lie albegra V*). The Classical Yang-Baxter Equation (CYBE) is equivalent to the flatness of K whereas the Modified CYBE implies that K is an affine locally symmetric space. An example is discussed
引用
收藏
页码:201 / 216
页数:16
相关论文
共 21 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]   HAMILTONIAN STRUCTURES AND LAX EQUATIONS [J].
BABELON, O ;
VIALLET, CM .
PHYSICS LETTERS B, 1990, 237 (3-4) :411-416
[3]  
BABELON O, 1989, INTEGRABLE MODELS 1
[4]  
BELAVIN AA, 1982, FUNCT ANAL APPL+, V16, P159
[5]  
BELAVIN AA, 1983, FUNCT ANAL APPL+, V17, P220
[6]  
Drinfeld V.G., 1983, SOVIET MATH DOKL, V27, P68
[7]   INTEGRABILITY AND SYMMETRIC-SPACES .2. THE COSET SPACES [J].
FERREIRA, LA .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (03) :675-699
[8]   INTEGRABILITY AND SYMMETRIC-SPACES .1. THE GROUP MANIFOLD [J].
FERREIRA, LA .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (03) :649-674
[9]  
FOMENKO A, 1978, MATH USSR IZV, V12, P371
[10]  
Fomenko A.T., 1988, INTEGRABLE SYSTEMS L