MINIMAL URYSOHN SPACES

被引:11
作者
SCARBOROUGH, CT
机构
[1] Mississippi State University, State College, MI
关键词
D O I
10.2140/pjm.1968.27.611
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A topological space X is (1) H(i), (2) H(ii), (3) R(i), (4) R(ii) if (1) Every open filter on X has nonvoid adherence, (2) Every open filter on X with one-point adherence is convergent, (3) Every regular filter on X has nonvoid adherence, (4) Every regular filter on X with one point adherence is convergent. These properties, which were investigated by Scarborough and Stone in a recent paper, arose naturally from the study of minimal Hausdorff, H-closed, minimal regular and R-closed spaces. This paper investigates similar properties for minimal Urysohn and Urysohn closed spaces. © 1968 by Pacific Journal of Mathematics.
引用
收藏
页码:611 / +
页数:1
相关论文
共 7 条
[1]  
BANASCHEWSKI B, 1955, MATH NACHR, V13, P141
[2]  
BANASCHEWSKI B, 1961, ARCH MATH, V12, P355
[3]  
Berri M P, 1963, T AM MATH SOC, V108, P97
[4]  
BERRI MP, 1964, J AUSTRAL MATH SOC, V4, P78
[5]   TV-ABGESCHLOSSENHEIT UND TV-MINIMALITAT [J].
HERRLICH, H .
MATHEMATISCHE ZEITSCHRIFT, 1965, 88 (03) :285-&
[6]  
Katetov M., 1940, CAS PEST MATH FYS, V69, P36
[7]   PRODUCTS OF NEARLY COMPACT SPACES [J].
SCARBOROUGH, CT ;
STONE, AH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 124 (01) :131-+