CONTRACTION OF CONVEX HYPERSURFACES IN EUCLIDEAN-SPACE

被引:213
作者
ANDREWS, B [1 ]
机构
[1] AUSTRALIAN NATL UNIV,CTR MATH & APPLICAT,CANBERRA,ACT 2601,AUSTRALIA
关键词
D O I
10.1007/BF01191340
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of fully nonlinear parabolic evolution equations for hypersurfaces in Euclidean space. A new geometrical lemma is used to prove that any strictly convex compact initial hypersurface contracts to a point in finite time, becoming spherical in shape as the limit is approached. In the particular case of the mean curvature flow this provides a simple new proof of a theorem of Huisken.
引用
收藏
页码:151 / 171
页数:21
相关论文
共 19 条
[1]  
ANDREWS B, 1992, MR2192 CMA AUSTR NAT
[2]  
ANDREWS B, IN PRESS J DIFFER GE
[3]   NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .5. THE DIRICHLET PROBLEM FOR WEINGARTEN HYPERSURFACES [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (01) :47-70
[4]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[5]  
CAFFARELLI L, 1986, CURRENT TOPICS PARTI
[7]  
CHOW B, 1985, J DIFFER GEOM, V23, P117
[8]  
CHOW B, HARNACKS INEQUALITY
[9]   IMMERSED HYPERSURFACES WITH CONSTANT WEINGARTEN CURVATURE [J].
ECKER, K ;
HUISKEN, G .
MATHEMATISCHE ANNALEN, 1989, 283 (02) :329-332
[10]  
ECKER K, 1990, INTERIOR ESTIMATES H