ITERATED MEANS OF CONVEX-BODIES

被引:0
作者
GREGORAC, RJ
机构
[1] Department of Mathematics, Iowa State University, Ames, 50011, Iowa
来源
MONATSHEFTE FUR MATHEMATIK | 1992年 / 113卷 / 03期
关键词
D O I
10.1007/BF01641767
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a convex body in R(n) with polar K^. Let +p refer to Firey p or p-dot means. If 0 < lambda < 1,p greater-than-or-equal-to 1, K1 =lambda-K+(1-lambda)K^ and K(i+1) = lambda-K(i)+p(1 - lambda)K(i)^, for i greater-than-or-equal-to 1, then lim(i --> infinity) K(i) is the unit ball in R(n).
引用
收藏
页码:189 / 198
页数:10
相关论文
共 10 条
[1]  
Eggleston H. G., 1958, CONVEXITY
[2]  
Firey W. J., 1961, PACIFIC J MATH, V11, P1263
[3]  
FIREY W J, 1962, MATH SCAND, V10, P17
[4]   SOME MEANS OF CONVEX BODIES [J].
FIREY, WJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 129 (02) :181-&
[5]   POLAR MEANS OF CONVEX BODIES AND A DUAL TO BRUNN-MINKOWSKI THEOREM [J].
FIREY, WJ .
CANADIAN JOURNAL OF MATHEMATICS, 1961, 13 (03) :444-&
[6]   SOME APPLICATIONS OF MEANS OF CONVEX BODIES [J].
FIREY, WJ .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (01) :53-&
[7]   MIXED AREA OF A CONVEX BODY AND ITS POLAR RECIPROCAL [J].
FIREY, WJ .
ISRAEL JOURNAL OF MATHEMATICS, 1963, 1 (04) :201-&
[8]  
Hardy G., 1959, INEQUALITIES
[9]  
Johnson L.W., 1977, NUMERICAL ANAL
[10]  
Rockafellar R.T., 1970, CONVEX ANAL