QUANTUM GROUP SYMMETRY OF N = 1 SUPERCONFORMAL FIELD-THEORIES

被引:6
作者
JIMENEZ, F
机构
[1] Departamento de Aerotécnia, EUIT Aeronáuticos, UPM, E-28040 Madrid
关键词
D O I
10.1016/0370-2693(90)90487-Q
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use the Gomez-Sierra contour deformation techniques to show that N = 1 superconformal field theories with 2c/3 < 1, in their Coulomb gas version, contain a quantum group structure as an underlying symmetry. In particular, we construct from the thermal subalgebras of these theories, the representation spaces of the quantized universal enveloping superalgebra U(q)osp(2, 1) and show how to compute its R-matrix, the comultiplication rules and its quantum Clebsch-Gordan coefficients by using a convenient definition of the screened vertex operators and an explicit realization of its generators.
引用
收藏
页码:577 / 585
页数:9
相关论文
共 20 条
[1]   DUALITY AND QUANTUM GROUPS [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
SIERRA, G .
NUCLEAR PHYSICS B, 1990, 330 (2-3) :347-398
[2]   QUANTUM GROUP INTERPRETATION OF SOME CONFORMAL FIELD-THEORIES [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
SIERRA, G .
PHYSICS LETTERS B, 1989, 220 (1-2) :142-152
[3]   HIDDEN QUANTUM SYMMETRIES IN RATIONAL CONFORMAL FIELD-THEORIES [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
SIERRA, G .
NUCLEAR PHYSICS B, 1989, 319 (01) :155-186
[4]   SUPERCONFORMAL SYMMETRY IN 2 DIMENSIONS [J].
BERSHADSKY, MA ;
KNIZHNIK, VG ;
TEITELMAN, MG .
PHYSICS LETTERS B, 1985, 151 (01) :31-36
[5]   CONFORMAL ALGEBRA AND MULTIPOINT CORRELATION-FUNCTIONS IN 2D STATISTICAL-MODELS [J].
DOTSENKO, VS ;
FATEEV, VA .
NUCLEAR PHYSICS B, 1984, 240 (03) :312-348
[6]   CONFORMAL-INVARIANCE, UNITARITY, AND CRITICAL EXPONENTS IN 2 DIMENSIONS [J].
FRIEDAN, D ;
QIU, Z ;
SHENKER, S .
PHYSICAL REVIEW LETTERS, 1984, 52 (18) :1575-1578
[7]   QUANTUM GROUP MEANING OF THE COULOMB GAS [J].
GOMEZ, C ;
SIERRA, G .
PHYSICS LETTERS B, 1990, 240 (1-2) :149-157
[8]  
GOMEZ C, UGVADPTA199004669 GE
[9]  
JIMENEZ FG, UNPUB
[10]   UNIVERSAL R-MATRIX OF THE QUANTUM SUPERALGEBRA OSP(2/1) [J].
KULISH, PP ;
RESHETIKHIN, NY .
LETTERS IN MATHEMATICAL PHYSICS, 1989, 18 (02) :143-149