Finite difference approximation for two-dimensional time fractional diffusion equation

被引:61
作者
Zhuang, P. [1 ]
Liu, F. [1 ,2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Two-dimensional time fractional differential equation; implicit difference approximation; stability; convergence;
D O I
10.1260/174830107780122667
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Fractional diffusion equations have recently been used to model problems in physics, hydrology, biology and other areas of application. In this paper, we consider a two-dimensional time fractional diffusion equation (2D-TFDE) on a finite domain. An implicit difference approximation for the 2D-TFDE is presented. Stability and convergence of the method are discussed using mathematical induction. Finally, a numerical example is given. The numerical result is in excellent agreement with our theoretical analysis.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 21 条
[1]   Solution for a fractional diffusion-wave equation defined in a bounded domain [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :145-155
[2]   Spectral analysis of fractional kinetic equations with random data [J].
Anh, VV ;
Leonenko, NN .
JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (5-6) :1349-1387
[3]   Least squares finite-element solution of a fractional order two-point boundary value problem [J].
Fix, GJ ;
Roop, JP .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (7-8) :1017-1033
[4]   FRACTIONAL DIFFUSION EQUATION AND RELAXATION IN COMPLEX VISCOELASTIC MATERIALS [J].
GIONA, M ;
CERBELLI, S ;
ROMAN, HE .
PHYSICA A, 1992, 191 (1-4) :449-453
[5]   Wright functions as scale-invariant solutions of the diffusion-wave equation [J].
Gorenflo, R ;
Luchko, Y ;
Mainardi, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :175-191
[6]   Time fractional diffusion: A discrete random walk approach [J].
Gorenflo, R ;
Mainardi, F ;
Moretti, D ;
Paradisi, P .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :129-143
[7]   The time fractional diffusion equation and the advection-dispersion equation [J].
Huang, F ;
Liu, F .
ANZIAM JOURNAL, 2005, 46 :317-330
[8]   The accuracy and stability of an implicit solution method for the fractional diffusion equation [J].
Langlands, TAM ;
Henry, BI .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (02) :719-736
[9]   Numerical solution of the space fractional Fokker-Planck equation [J].
Liu, F ;
Anh, V ;
Turner, I .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 166 (01) :209-219
[10]  
Liu F., 2003, Journal of Applied Mathematics and Informatics, V13, P233