CHARACTERIZATION OF PRIME NOETHERIAN PI RINGS AND A THEOREM OF MORI-NAGATA

被引:6
作者
BRAUN, A
机构
关键词
D O I
10.2307/2042096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:9 / 15
页数:7
相关论文
共 11 条
[1]   SUBRINGS OF ARTINIAN AND NOETHERIAN RINGS [J].
EISENBUD, D .
MATHEMATISCHE ANNALEN, 1970, 185 (03) :247-&
[2]  
Formanek E., 1974, COMMUN ALGEBRA, V1, P79
[3]  
HEINZER W, 1970, J REINE ANGEW MATH, V241, P147
[4]   PRINCIPAL IDEAL THEOREM FOR NOETHERIAN PI RINGS [J].
JATEGAONKAR, AV .
JOURNAL OF ALGEBRA, 1975, 35 (1-3) :17-22
[5]  
Kaplansky I., 1978, COMMUTATIVE RINGS
[6]   MAXIMAL IDEAL TRANSFORMS OF NOETHERIAN RINGS [J].
MATIJEVIC, JR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 54 (JAN) :49-52
[7]  
Nagata M., 1962, LOCAL RINGS INTERSCI, V13
[8]  
Nishimura J., 1976, J MATH KYOTO U, V16, P117, DOI [10.1215/kjm/1250522963, DOI 10.1215/KJM/1250522963]
[9]  
Procesi C., 1973, RINGS POLYNOMIAL IDE
[10]   INTEGRAL EXTENSIONS OF RINGS SATISFYING A POLYNOMIAL IDENTITY [J].
SCHELTER, W .
JOURNAL OF ALGEBRA, 1976, 40 (01) :245-257