WEYL NUMBERS IN SEQUENCE-SPACES AND SECTIONS OF UNIT BALLS

被引:11
作者
CAETANO, AM [1 ]
机构
[1] UNIV SUSSEX,DIV MATH,BRIGHTON BN1 9QH,E SUSSEX,ENGLAND
关键词
D O I
10.1016/0022-1236(92)90059-R
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using techniques of a geometrical nature, the following result is proved: denoting by Iqp(M): lpM → lqM the natural embedding and by xk the kth Weyl number, if 0 < p ≤ q ≤ 2 there are positive constants c1 and c2 such that, for all k, Mε{lunate}N with k ≤ M 2, c1k 1 q - 1 p ≤ xk(Iqp(M)) ≤ c2k 1 q - 1 p, the upper estimate being even valid for all k ε{lunate} {1,..., M}. As a consequence of the approach used, some results about sections of unit balls are also derived, namely VolH(H ∩ BpM) ≤ Volk(Bpk) for 0 < p ≤ 2, where BpM, Bpk are the closed unit balls centred at zero of the spaces lpM and lpk, respectively, H is a k-dimensional subspace of lpM, and Volk, VolH denote Lebesgue measures in Rk and H, respectively. © 1992.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 16 条
[1]  
[Anonymous], 1991, INTRO PROBABILITY TH
[2]  
[Anonymous], 1983, MONOGRAPHS MATH
[3]   WEYL NUMBERS IN FUNCTION-SPACES [J].
CAETANO, AM .
FORUM MATHEMATICUM, 1990, 2 (03) :249-263
[4]   WEYL NUMBERS IN FUNCTION SPACES-II [J].
CAETANO, AM .
FORUM MATHEMATICUM, 1991, 3 (06) :613-621
[5]  
EDMUNDS DE, 1992, P LOND MATH SOC, V64, P153
[6]  
EDMUNDS DE, 1989, P LOND MATH SOC, V58, P137
[7]   UNIMODALITY AND DOMINANCE FOR SYMMETRIC RANDOM VECTORS [J].
KANTER, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 229 (MAY) :65-85
[8]  
Konig H, 1986, OPERATOR THEORY ADV, V16
[9]  
Kothe G., 1969, TOPOLOGICAL VECTOR S, V1
[10]  
LINDE R, 1986, REND CIRC MAT PALE S, P83