BMO IN THE BERGMAN METRIC ON BOUNDED SYMMETRICAL DOMAINS

被引:117
作者
BEKOLLE, D
BERGER, CA
COBURN, LA
ZHU, KH
机构
[1] CUNY HERBERT H LEHMAN COLL,DEPT MATH & COMP SCI,BRONX,NY 10468
[2] SUNY BUFFALO,DEPT MATH,BUFFALO,NY 14214
[3] SUNY ALBANY,DEPT MATH & STAT,ALBANY,NY 12222
关键词
D O I
10.1016/0022-1236(90)90131-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For bounded symmetric domains Ω in Cn, a notion of "bounded mean oscillation" in terms of the Bergman metric is introduced. It is shown that for f{hook} in L2(Ω, dv), f{hook} is in BMO(Ω) if and only if the densely-defined operator [Mf{hook}, P] ≡ Mf{hook}P - PMf{hook} on L2(Ω, dv) is bounded (here, Mf{hook} is "multiplication by f{hook}" and P is the Bergman projection with range the Bergman subspace H2(Ω, dv) = La2(Ω, dv) of holomorphic functions in L2(Ω, dv)). An analogous characterization of compactness for [Mf{hook}, P] is provided by functions of "vanishing mean oscillation at the boundary of Ω". © 1990.
引用
收藏
页码:310 / 350
页数:41
相关论文
共 22 条
[2]   THE DUAL OF THE BERGMAN SPACE A1 IN SYMMETRICAL SIEGEL DOMAINS OF TYPE-II [J].
BEKOLLE, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 296 (02) :607-619
[3]   BMO ON THE BERGMAN SPACES OF THE CLASSICAL DOMAINS [J].
BERGER, CA ;
COBURN, LA ;
ZHU, KH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 17 (01) :133-136
[4]   FUNCTION-THEORY ON CARTAN DOMAINS AND THE BEREZIN-TOEPLITZ SYMBOL CALCULUS [J].
BERGER, CA ;
COBURN, LA ;
ZHU, KH .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (05) :921-953
[5]  
Coifman R. R., 1980, ASTE RISQUE, V77, P12
[6]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[7]   FUNCTION-SPACES AND REPRODUCING KERNELS ON BOUNDED SYMMETRIC DOMAINS [J].
FARAUT, J ;
KORANYI, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :64-89
[8]   PROJECTIONS ON SPACES OF HOLOMORPHIC FUNCTIONS IN BALLS [J].
FORELLI, F ;
RUDIN, W .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (06) :593-602
[9]  
GARNETT JB, 1982, BOUNDED ANAL FUNCTIO
[10]  
Gindikin SG., 1964, RUSS MATH SURV, V29, P1, DOI [10.1070/RM1964v019n04ABEH001153, DOI 10.1070/RM1964V019N04ABEH001153]