THE MAXIMAL AND MINIMAL RANKS OF THE MATRIX EXPRESSION WITH RESPECT TO THREE VARIANT MATRICES

被引:0
作者
Cheng, Shizhen [1 ,2 ]
机构
[1] Beijing Inst Civil Engn & Architecture, Dept Basic Sci, Beijing 100044, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
来源
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS | 2006年 / 6卷 / 01期
关键词
generalized inverse; invariance; matrix equation; matrix expression; range; rank;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a matrix with some variant entries in it or a matrix expression with some variant matrices in it, the rank of the partial matrix or matrix expression will vary with respect to the variant entries or variant matrices. Many problems in matrix theory and applications are closely related to maximal and minimal possible ranks of matrix expressions with variant matrices. In this paper, we shall find the maximal and minimal ranks of the matrix expression with respect to three variant matrices.
引用
收藏
页码:203 / 212
页数:10
相关论文
共 9 条
[1]   Unicity of minimal rank completions for tri-diagonal partial block matrices [J].
Bostian, AA ;
Woerdeman, HJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 325 (1-3) :23-55
[2]  
COHEN N, 1989, OPER THEORY ADV APPL, V40, P165
[3]  
Davis C., 1988, OPER THEORY ADV APPL, V29, P87
[4]  
JOHNSON C. R., 1990, P S APPL MATH, V40, P171, DOI DOI 10.1090/PSAPM
[5]  
JOHNSON CR, 1991, LINEAR MULTILINEAR A, V28, P271, DOI DOI 10.1080/03081089108818051
[6]   Completing triangular block matrices with maximal and minimal ranks [J].
Tian, YG .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 321 (1-3) :327-345
[7]  
Woerdeman H. J., 1978, INTEGR EQUAT OPER TH, V10, P859
[8]   MINIMAL RANK COMPLETIONS FOR BLOCK MATRICES [J].
WOERDEMAN, HJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 121 :105-122
[9]  
Woerdeman HJ., 1993, LINEAR MULTILINEAR A, V36, P59, DOI [10.1080/03081089308818275, DOI 10.1080/03081089308818275]