PROTEIN KINASE;
PHOSPHORYLATION;
PROTEIN PHOSPHATASE;
BETA CELL;
INSULIN SECRETION;
SULFONYLUREA RECEPTOR;
D O I:
10.1007/BF00400822
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
The central role of reversible protein phosphorylation in regulation of beta-cell function is reviewed and the properties of the protein kinases so far defined in beta cells are summarised. The key effect of Ca2+ to initiate insulin secretion involves activation of a Ca2+/calmodulin-dependent protein kinase. Potentiation of secretion by agents activating protein kinase A or C appears to involve an increase in the sensitivity of the secretory system to intracellular Ca2+. The effects of MgATP on the binding of [H-3]-glibenclamide to the beta-cell sulphonylurea receptor suggest that the properties of this receptor which controls the activity of ATP-sensitive K-channels, are modulated by phosphorylation. The identity of the kinases and phosphatases responsible is not known but the presence in beta-cell membranes of various kinases not dependent on Ca2+ or cyclic AMP, and including tyrosine kinase, is documented, together with the presence of both Ca2+-dependent and Ca2+-independent protein phosphatases. Protein phosphorylation is also involved in regulation of beta-cell Ca2+ fluxes and evidence is presented that protein kinase C activation inhibits Ca2+ signalling by reducing influx of Ca2+ into the beta cell. The identity of the Ca2+/calmodulin-dependent protein kinase activity in beta cells is discussed. Comparison of its properties towards substrates and inhibitors with those of brain Ca2+/calmodulin-dependent protein kinase II suggests that the beta-cell enzyme may be similar or identical to the brain enzyme. Evidence from Northern and Western blotting experiments supports this conclusion. These findings are incorporated in a model for control of insulin secretion.