THE STRUCTURE OF THE SEQUENCE-SPACES OF MADDOX

被引:15
作者
GROSSEERDMANN, KG [1 ]
机构
[1] FERNUNIVGESAMTHSCH HAGEN,GESAMTHSCH,FACHBEREICH MATH & INFORMAT,W-5800 HAGEN,GERMANY
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1992年 / 44卷 / 02期
关键词
D O I
10.4153/CJM-1992-020-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sequence of spaces of Maddox, c0(p), c(p) and l(infinity)(p), are investigated. Here, p = (Pk) is a bounded sequence of strictly positive numbers. It is observed that co(p) is an echelon space of order 0 and that l(infinity(p) is a co-echelon space of order infinity, while clearly c(p) = c0(p) + [(1, 1, 1,...)]. This sheds a new light on the topological and sequence space structure of these spaces: Based on the highly developed theory of (co-) echelon spaces all known and various new structural properties are derived.
引用
收藏
页码:298 / 307
页数:10
相关论文
共 23 条
[1]  
BIERSTEDT KD, 1982, FUNCTIONAL ANAL HOLO, P27
[2]   INDUCTIVE LIMIT OF COUNTABLE FH-SPACES - METHOD OF UNIFICATION [J].
BOOS, J .
MANUSCRIPTA MATHEMATICA, 1977, 21 (03) :205-225
[3]  
Goes G., 1974, TOHOKU MATH J, V26, P487
[4]  
Jarchow H., 1981, LOCALLY CONVEX SPACE, DOI DOI 10.1007/978-3-322-90559-8
[5]  
Kothe G., 1969, TOPOLOGICAL VECTOR S, V1
[7]  
LASCARIDES CG, 1970, PROC CAMB PHILOS S-M, V68, P99
[8]  
LUH Y, 1987, UBERBLICK MITT MATH, V180, P35
[9]  
MADDOX IJ, 1974, J LOND MATH SOC, V8, P593
[10]  
MADDOX IJ, 1969, PROC CAMB PHILOS S-M, V66, P541