An atomic absorption spectrometer with flame atomization and a flame emission light source is described. The light source is prepared by aspirating a solution containing a high concentration of analyte into the emission flame. Two different source flames (air/acetylene and nitrous oxide/acetylene) have been evaluated, with the N2O flame providing better signal to noise ratios (S/N) in most cases. Source S/N values as high as 5900 (Cr) have been observed. Experimental parameters have been optimized for nine test elements to give limits of detection obtained with this system that are in some cases as good as those obtained with the traditional hollow cathode lamp source; for example, Cu (4 ng/ml), Mn (3 ng/ml) and Ni (5 ng/ml). Linear dynamic ranges typically span 2-3 orders of magnitude. This system offers an inexpensive emission source with the ability to quickly change the setup to accommodate different analytes.