CELL-SURFACE ANNEXIN-II IS A HIGH-AFFINITY RECEPTOR FOR THE ALTERNATIVELY SPLICED SEGMENT OF TENASCIN-C

被引:201
作者
CHUNG, CY [1 ]
ERICKSON, HP [1 ]
机构
[1] DUKE UNIV, MED CTR, DEPT CELL BIOL, DURHAM, NC 27710 USA
关键词
D O I
10.1083/jcb.126.2.539
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We have investigated the binding of soluble tenascin-C (TN-C) to several cell lines using a radio-ligand binding assay. Specific binding was demonstrated to U-251MG human glioma cells and to a line of bovine aortic endothelial cells, but hamster fibroblasts showed no specific binding. Recombinant proteins corresponding to specific domains of TN-C were used to map the binding site(s) in TN-C. The alternatively spliced segment (TNfnA-D) inhibited the binding of native TN-C most strongly, and itself bound to glioma and endothelial cells. Scatchard analysis of TNfnA-D binding indicated 2-5 x 10(5) binding sites per cell, with an apparent 2 nM dissociation constant. The cell surface receptor for TNfnA-D was identified as a 35-kD protein on the basis of blot binding assays and affinity chromatography of membrane extracts on native TN-C and TNfnA-D columns. Protein sequencing indicated that this 35-kD receptor was annexin II. Annexin II is well characterized as a cytoplasmic protein, so it was surprising to find it as a presumably extracellular receptor for TN-C. To confirm that it was the 35-kD receptor, we obtained purified annexin II and demonstrated its binding to TNfnA-D and TN-C at nM concentrations. Antibodies to annexin II prominently stained the external surface of live endothelial cells and blocked the binding of TNfnA-D to the cells. Thus annexin II appears to be a receptor for the alternatively spliced segment of TN-C, and may mediate cellular responses to soluble TN-C in the extracellular matrix
引用
收藏
页码:539 / 548
页数:10
相关论文
共 62 条
[1]   INTERNAL AMINO-ACID SEQUENCE-ANALYSIS OF PROTEINS SEPARATED BY ONE-DIMENSIONAL OR TWO-DIMENSIONAL GEL-ELECTROPHORESIS AFTER INSITU PROTEASE DIGESTION ON NITROCELLULOSE [J].
AEBERSOLD, RH ;
LEAVITT, J ;
SAAVEDRA, RA ;
HOOD, LE ;
KENT, SBH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (20) :6970-6974
[2]   A ROLE FOR CALPACTIN IN CALCIUM-DEPENDENT EXOCYTOSIS IN ADRENAL CHROMAFFIN CELLS [J].
ALI, SM ;
GEISOW, MJ ;
BURGOYNE, RD .
NATURE, 1989, 340 (6231) :313-315
[3]   TENASCIN DURING GUT DEVELOPMENT - APPEARANCE IN THE MESENCHYME, SHIFT IN MOLECULAR-FORMS, AND DEPENDENCE ON EPITHELIAL MESENCHYMAL INTERACTIONS [J].
AUFDERHEIDE, E ;
EKBLOM, P .
JOURNAL OF CELL BIOLOGY, 1988, 107 (06) :2341-2349
[4]  
AUKHIL I, 1993, J BIOL CHEM, V268, P2542
[5]   PURIFICATION OF HEXABRACHION (TENASCIN) FROM CELL-CULTURE CONDITIONED MEDIUM, AND SEPARATION FROM A CELL-ADHESION FACTOR [J].
AUKHIL, I ;
SLEMP, CC ;
LIGHTNER, VA ;
NISHIMURA, K ;
BRISCOE, G ;
ERICKSON, HP .
MATRIX, 1990, 10 (02) :98-111
[6]  
BARTSCH S, 1992, J NEUROSCI, V12, P736
[7]   CALCIUM INFLUX THROUGH ANNEXIN-V ION CHANNELS INTO LARGE UNILAMELLAR VESICLES MEASURED WITH FURA-2 [J].
BERENDES, R ;
BURGER, A ;
VOGES, D ;
DEMANGE, P ;
HUBER, R .
FEBS LETTERS, 1993, 317 (1-2) :131-134
[8]   TENASCIN MEDIATES CELL ATTACHMENT THROUGH AN RGD-DEPENDENT RECEPTOR [J].
BOURDON, MA ;
RUOSLAHTI, E .
JOURNAL OF CELL BIOLOGY, 1989, 108 (03) :1149-1155
[9]   TENASCIN-X - A NOVEL EXTRACELLULAR-MATRIX PROTEIN ENCODED BY THE HUMAN XB GENE OVERLAPPING P450C21B [J].
BRISTOW, J ;
TEE, MK ;
GITELMAN, SE ;
MELLON, SH ;
MILLER, WL .
JOURNAL OF CELL BIOLOGY, 1993, 122 (01) :265-278
[10]   DISTRIBUTION AND FUNCTION OF TENASCIN DURING CRANIAL NEURAL CREST DEVELOPMENT IN THE CHICK [J].
BRONNERFRASER, M .
JOURNAL OF NEUROSCIENCE RESEARCH, 1988, 21 (2-4) :135-147