PHASE-TRANSITION IN THE TOPOLOGICAL PROPERTIES OF THE GENERALIZED PERCOLATION MODEL

被引:0
|
作者
DJORDJEVIC, ZV
机构
关键词
D O I
10.1016/0378-4371(92)90003-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Within the generalized percolation model we study scaling behavior of the cluster-size-chemical-distance distribution function g(sl), specifying the number of clusters of mass s and chemical distance l. Using the exact series analysis we show that the kth moments of the g(sl) function, with exp(-l) taken as a fractal measure, for k < 0. exhibit muitifractal behavior with an exponential dependence on s. At k = 0 the same analysis indicates the occurrence of a phase transition in the spectrum of multifractal exponents. For k > 0, g(sl), possesses a power law dependence on s with a constant gap exponent, which agrees with previous results for the mass-chemical-distance probability distribution function and the mean chemical distance of the percolation clusters and lattice animals.
引用
收藏
页码:425 / 435
页数:11
相关论文
共 50 条
  • [21] PHASE-TRANSITION IN DTRM MODEL
    KAWASAKI, T
    JOURNAL DE PHYSIQUE, 1988, 49 (C-8): : 1015 - 1016
  • [22] PHASE-TRANSITION IN IN-GASES WITH GENERALIZED CHARGES
    BULGADAEV, SA
    PHYSICS LETTERS A, 1981, 86 (04) : 213 - 216
  • [23] GENERALIZED HARTREE-FOCK TO PHASE-TRANSITION
    PELTIER, S
    PHYSICA SCRIPTA, 1992, 45 (06): : 545 - 547
  • [24] PHASE-TRANSITION MODEL FOR HEMOLYSIS
    MAKOWSKI, L
    JOURNAL OF THEORETICAL BIOLOGY, 1976, 61 (01) : 47 - 53
  • [25] MONTE-CARLO STUDY OF THE ISING-MODEL PHASE-TRANSITION IN TERMS OF THE PERCOLATION TRANSITION OF PHYSICAL CLUSTERS
    DEMEO, MD
    HEERMANN, DW
    BINDER, K
    JOURNAL OF STATISTICAL PHYSICS, 1990, 60 (5-6) : 585 - 618
  • [26] BEHAVIOR OF THE TOPOLOGICAL SUSCEPTIBILITY ACROSS THE DECONFINING PHASE-TRANSITION
    DIGIACOMO, A
    MEGGIOLARO, E
    PANAGOPOULOS, H
    PHYSICS LETTERS B, 1992, 277 (04) : 491 - 495
  • [27] Phase-Transition Photonic Brick for Reconfigurable Topological Pathways
    Qin, Shi Long
    You, Jian Wei
    Chen, Long
    Su, Jian Lin
    Ma, Qian
    Cui, Tie Jun
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (48)
  • [28] NEW PHASE-TRANSITION SCENARIO FOR CHIRAL AND ALGEBRAIC ORDER IN A GENERALIZED PLANAR MODEL
    VANHIMBERGEN, JE
    PHYSICAL REVIEW B, 1986, 34 (09): : 6567 - 6570
  • [29] ROLE OF TOPOLOGICAL DEFECTS IN THE PHASE-TRANSITION OF THE 3-DIMENSIONAL HEISENBERG-MODEL
    LAU, MH
    DASGUPTA, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (01): : L51 - L57
  • [30] SITE-BOND PERCOLATION AND PHASE-TRANSITION IN DILUTED MAGNETIC SYSTEM
    ZHENG, MS
    LIU, YP
    LUO, EZ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1992, 35 (03): : 311 - 316