DUALITY IN QUADRATICALLY-CONSTRAINED QUADRATIC PROGRAMS

被引:0
|
作者
PETERSON, EL
ECKER, JG
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:483 / +
页数:1
相关论文
共 50 条
  • [1] Penalized semidefinite programming for quadratically-constrained quadratic optimization
    Madani, Ramtin
    Kheirandishfard, Mohsen
    Lavaei, Javad
    Atamturk, Alper
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 78 (03) : 423 - 451
  • [2] Introducing the quadratically-constrained quadratic programming framework in HPIPM
    Frison, Gianluca
    Frey, Jonathan
    Messerer, Florian
    Zanelli, Andrea
    Diehl, Moritz
    2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, : 447 - 453
  • [3] Penalized semidefinite programming for quadratically-constrained quadratic optimization
    Ramtin Madani
    Mohsen Kheirandishfard
    Javad Lavaei
    Alper Atamtürk
    Journal of Global Optimization, 2020, 78 : 423 - 451
  • [4] CONTROLLED PERTURBATIONS FOR QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMS
    FANG, SC
    RAJASEKERA, JR
    MATHEMATICAL PROGRAMMING, 1986, 36 (03) : 276 - 289
  • [5] Convex quadratic relaxations of nonconvex quadratically constrained quadratic programs
    Mitchell, John E.
    Pang, Jong-Shi
    Yu, Bin
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (01): : 120 - 136
  • [6] Representing quadratically constrained quadratic programs as generalized copositive programs
    Burer, Samuel
    Dong, Hongbo
    OPERATIONS RESEARCH LETTERS, 2012, 40 (03) : 203 - 206
  • [7] On quadratically constrained quadratic optimization problems and canonical duality theory
    Zalinescu, Constantin
    OPTIMIZATION LETTERS, 2020, 14 (08) : 2227 - 2245
  • [8] On quadratically constrained quadratic optimization problems and canonical duality theory
    Constantin Zălinescu
    Optimization Letters, 2020, 14 : 2227 - 2245
  • [9] A RELAXATION METHOD FOR NONCONVEX QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMS
    ALKHAYYAL, FA
    LARSEN, C
    VANVOORHIS, T
    JOURNAL OF GLOBAL OPTIMIZATION, 1995, 6 (03) : 215 - 230
  • [10] Faster, but weaker, relaxations for quadratically constrained quadratic programs
    Burer, Samuel
    Kim, Sunyoung
    Kojima, Masakazu
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 59 (1-2) : 27 - 45