AN APPLICATION OF 5-FOLD CROSS VALIDATION ON A BINARY LOGISTIC REGRESSION MODEL

被引:2
作者
Attanayake, A. M. C. H. [1 ]
Jayasundara, D. D. M. [1 ]
Peiris, T. S. G. [2 ]
机构
[1] Univ Kelaniya, Dept Stat & Comp Sci, Kelaniya, Sri Lanka
[2] Univ Moratuwa, Dept Math, Katubedda, Sri Lanka
关键词
and phrases: 5-fold cross validation; binary logistic regression; bootstrapping methods; c-statistic; optimism; split sample methods;
D O I
10.17654/AS049060443
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Internal validation techniques can be used to check the predictive ability of the developed models. The most common internal validation techniques are split sample methods, cross validation methods and bootstrapping methods. The split sample methods are inefficient with the small size of data sets. The bootstrapping methods are efficient with the knowledge of computer programming languages. The cross validation methods are not very popular in practice. Therefore, in this study 5-fold cross validation method of cross validation techniques is applied to validate the predictive ability of a binary logistic regression model. The binary logistic regression model was fitted on a data set of UCI machine learning repository. Results of the cross validation reveal that low value of optimism and high value of c-statistic in the fitted regression model indicate an acceptable discrimination power of the developed model.
引用
收藏
页码:443 / 451
页数:9
相关论文
共 10 条
[1]  
International Diabetes Federation, 2006, IDF DIABETES ATLAS
[2]   Prevalence and projections of diabetes and pre-diabetes in adults in Sri Lanka - Sri Lanka Diabetes, Cardiovascular Study (SLDCS) [J].
Katulanda, P. ;
Constantine, G. R. ;
Mahesh, J. G. ;
Sheriff, R. ;
Seneviratne, R. D. A. ;
Wijeratne, S. ;
Wijesuriya, M. ;
McCarthy, M. I. ;
Adler, A. I. ;
Matthews, D. R. .
DIABETIC MEDICINE, 2008, 25 (09) :1062-1069
[3]  
Katulanda P., 2011, ASIA PAC FAM MED, V5, P10
[4]  
Lichman M, 2013, UCI MACHINE LEARNING
[5]   Collinearity diagnostics of binary logistic regression model [J].
Midi, Habshah ;
Sarkar, S. K. ;
Rana, Sohel .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2010, 13 (03) :253-267
[6]  
Rajesh K, 2012, INT J ENG INNOV TECH, V2, P224
[7]   Rising Burden of Obesity in Asia [J].
Ramachandran, Ambady ;
Snehalatha, Chamukuttan .
JOURNAL OF OBESITY, 2010, 2010
[8]   Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis [J].
Steyerberg, EW ;
Harrell, FE ;
Borsboom, GJJM ;
Eijkemans, MJC ;
Vergouwe, Y ;
Habbema, JDF .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2001, 54 (08) :774-781
[9]  
WHO, 1999, DIAGN CLASS DIAB M 1
[10]  
Zahid A., 2006, J STAT, V13, P1684