A MONTE CARLO METHOD FOR STOCHASTIC TIME-OPTIMAL CONTROL

被引:2
|
作者
ROBINSON, PN
YURTSEVE.HO
机构
关键词
D O I
10.1109/TAC.1969.1099260
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:574 / &
相关论文
共 50 条
  • [1] TIME-OPTIMAL STOCHASTIC CONTROL PROBLEM
    PROPPE, H
    BOYARSKY, A
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1977, 8 (10) : 1193 - 1199
  • [2] STOCHASTIC TIME-OPTIMAL CONTROL-PROBLEMS
    ZHANG, W
    ELLIOTT, D
    IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1988, 135 (06): : 395 - 404
  • [3] A TIME-OPTIMAL PROBLEM FOR A STOCHASTIC-CONTROL SYSTEM
    SMIRNOV, IP
    DIFFERENTIAL EQUATIONS, 1986, 22 (02) : 183 - 189
  • [4] DIRECT SEARCH FOR TIME-OPTIMAL CONTROL IN STOCHASTIC SYSTEMS
    LEE, WK
    LUECKE, RH
    INTERNATIONAL JOURNAL OF CONTROL, 1974, 19 (01) : 129 - 141
  • [5] Computational Method for Time-Optimal Switching Control
    C.Y. Kaya
    J.L. Noakes
    Journal of Optimization Theory and Applications, 2003, 117 : 69 - 92
  • [6] The Adjoint Method for Time-Optimal Control Problems
    Eichmeir, Philipp
    Lauss, Thomas
    Oberpeilsteiner, Stefan
    Nachbagauer, Karin
    Steiner, Wolfgang
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2021, 16 (02):
  • [7] Computational method for time-optimal switching control
    Kaya, CY
    Noakes, JL
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 117 (01) : 69 - 92
  • [8] A Multilevel Monte Carlo Approach for a Stochastic Optimal Control Problem Based on the Gradient Projection Method
    Ye, Changlun
    Luo, Xianbing
    APPLIEDMATH, 2023, 3 (01): : 98 - 116
  • [9] Time-optimal fuzzy control based on computation method
    Lin, PT
    Lee, TT
    INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 600 - 605
  • [10] Hamiltonian Monte Carlo based Path Integral for Stochastic Optimal Control
    Akshay, P.
    Vrushabh, D.
    Sonam, K.
    Wagh, S.
    Singh, N.
    2020 28TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2020, : 254 - 259