On the planarity of the k-zero-divisor hypergraphs

被引:17
作者
Chelvam, T. Tamizh [1 ]
Selvakumar, K. [1 ]
Ramanathan, V. [1 ]
机构
[1] Manonmaniam Sundaranar Univ, Dept Math, Tirunelveli 627012, Tamil Nadu, India
关键词
Hypergraph; Zero-divisor graph; Planar hypergraph; Incidence graph;
D O I
10.1016/j.akcej.2015.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative ring with identity and let Z( R, k) be the set of all k-zero-divisors in R and k > 2 an integer. The k-zerodivisor hypergraph of R, denoted by H-k ( R), is a hypergraph with vertex set Z( R, k), and for distinct element x(1), x(2),..., x(k) in Z( R, k), the set {x1, x2,..., xk} is an edge of H-k ( R) if and only if x(1)x(2) ... x(k) = 0 and the product of elements of no ( k-1)-subset of {x(1), x(2),..., x(k)} is zero. In this paper, we characterize all finite commutative non-local rings R for which the k-zero-divisor hypergraph is planar. (C) 2015 Kalasalingam University. Production and Hosting by Elsevier B.V.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 16 条
[1]   When a zero-divisor graph is planar or a complete r-partite graph [J].
Akbari, S ;
Maimani, HR ;
Yassemi, S .
JOURNAL OF ALGEBRA, 2003, 270 (01) :169-180
[2]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[3]  
Anderson F. F, 1999, LECT NOTES PURE APPL, V220, P61
[4]   On the genus of generalized unit and unitary Cayley graphs of a commutative ring [J].
Asir, T. ;
Chelvam, T. Tamizh .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) :444-458
[5]  
Atiyah M. F., 1969, INTRO COMMUTATIVE AL
[6]   Planar zero-divisor graphs [J].
Belshoff, Richard ;
Chapman, Jeremy .
JOURNAL OF ALGEBRA, 2007, 316 (01) :471-480
[7]  
Berge, 2003, GRAPHS HYPERGRAPHS
[8]  
Chartrand G., 2016, GRAPHS DIGRAPHS, V6th, DOI 10.1201/b19731
[9]   ON THE GENUS OF THE TOTAL GRAPH OF A COMMUTATIVE RING [J].
Chelvam, T. Tamizh ;
Asir, T. .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (01) :142-153
[10]  
Chiang-Hsieh HJ, 2010, HOUSTON J MATH, V36, P1