Properties of Cordonnier, Perrin and Van der Laan numbers

被引:71
作者
Shannon, A. G. [1 ,2 ]
Anderson, P. G. [3 ]
Horadam, A. F. [4 ]
机构
[1] KvB Inst Technol, Sydney, NSW, Australia
[2] Univ New South Wales, Kensington, NSW, Australia
[3] Rochester Inst Technol, Rochester, NY 14623 USA
[4] Univ New England, Armidale, NSW, Australia
关键词
D O I
10.1080/00207390600712554
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
This paper aims to explore some properties of certain third-order linear sequences which have some properties analogous to the better known second-order sequences of Fibonacci and Lucas. Historical background issues are outlined. These, together with the number and combinatorial theoretical results, provide plenty of pedagogical opportunities for further development.
引用
收藏
页码:825 / 831
页数:7
相关论文
共 16 条
[1]  
Atanassov K.T., 2002, NEW VISUAL PERSPECTI
[2]  
Benjamin A.T, 2003, PROOFS THAT REALLY C
[3]   PADUA AND PISA ARE EXPONENTIALLY FAR APART [J].
De Weger, Benjamin M. M. .
PUBLICACIONS MATEMATIQUES, 1997, 41 (02) :631-651
[4]  
DEALBA LM, 2002, INT J MATH ED SCI TE, V33, P96
[5]  
Fairgrieve S, 2005, FIBONACCI QUART, V43, P137
[6]  
Feinberg M., 1963, FIBONACCI QUART, V1, P71
[7]  
Galvin W, 2003, INT J MATH ED SCI TE, V34, P765
[8]   CUBIC EQUATIONS, OR WHERE DID THE EXAMINATION QUESTION COME FROM [J].
GRIFFITHS, HB ;
HIRST, AE .
AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (02) :151-161
[9]  
Lucas E., 1876, A F C CLERMONT FERRA, P61
[10]  
Padovan R., 2002, COMMUNICATION