The Stabilizing mechanism for an interrupted dynamical system with periodic threshold

被引:3
作者
Asahara, Hiroyuki [1 ]
Tasaki, Kenichi [1 ]
Aihara, Kazuyuki [2 ]
Kousaka, Takuji [1 ]
机构
[1] Oita Univ, Dept Engn, 700 Dannoharu, Oita 8701192, Japan
[2] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan
来源
IEICE NONLINEAR THEORY AND ITS APPLICATIONS | 2012年 / 3卷 / 04期
基金
日本学术振兴会;
关键词
interrupted dynamical system; periodic threshold; fixed threshold; bifurcation; return map; stability;
D O I
10.1587/nolta.3.546
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study mathematically analyzes an interrupted dynamical system (IDS) with a periodic threshold. First, we describe a simple IDS, which is dependent on its own state and a periodic interval, and explain the behavior of the waveform. Then, we define the discrete map (return map) of the system and calculate the bifurcation diagrams. Finally, we focus on the dynamical structure of the return map in the system with a periodic threshold and discuss the stabilizing mechanism, especially its effect in a wide parameter space. The stabilizing effect is verified by the laboratory experiment.
引用
收藏
页码:546 / 556
页数:11
相关论文
共 22 条
[1]  
Banerjee S., 2001, NONLINEAR PHENOMENA
[2]   A minimal model for forest fire regimes [J].
Casagrandi, R ;
Rinaldi, S .
AMERICAN NATURALIST, 1999, 153 (05) :527-539
[3]   Chaos study and parameter-space analysis of the DC-DC buck-boost converter [J].
Cheng, KWE ;
Liu, M ;
Wu, J .
IEE PROCEEDINGS-ELECTRIC POWER APPLICATIONS, 2003, 150 (02) :126-138
[4]  
di Bernardo M., 2002, Chaos in circuits and systems, P317, DOI 10.1142/9789812705303_0016
[5]   Stability analysis of the continuous-conduction-mode buck converter via Filippov's method [J].
Giaouris, Damian ;
Banerjee, Soumitro ;
Zahawi, Bashar ;
Pickert, Volker .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (04) :1084-1096
[6]  
Ito S., 1979, TOKYO J MATH, V2, P241
[7]   Bifurcation analysis of a piecewise smooth system with non-linear characteristics [J].
Kousaka, T ;
Ueta, T ;
Ma, Y ;
Kawakami, H .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2005, 33 (04) :263-279
[8]   Bifurcation analysis of switched dynamical systems with periodically moving borders [J].
Ma, Y ;
Kawakami, H ;
Tse, CK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (06) :1184-1193
[9]  
Nakano H, 2001, IEICE T FUND ELECTR, VE84A, P1293
[10]   BORDER-COLLISION BIFURCATIONS FOR PIECEWISE-SMOOTH ONE-DIMENSIONAL MAPS [J].
NUSSE, HE ;
YORKE, JA .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (01) :189-207