PREDICTING PROTEIN MUTANT ENERGETICS BY SELF-CONSISTENT ENSEMBLE OPTIMIZATION

被引:146
作者
LEE, C
机构
[1] Beckman Laboratories for Structural Biology, Department of Cell Biology Standford, University Medical Center, Stanford
关键词
PROTEIN STABILITY; PROTEIN STRUCTURE; SELF-CONSISTENT ENSEMBLE OPTIMIZATION; SIDE-CHAIN PACKING; SITE-DIRECTED MUTAGENESIS;
D O I
10.1006/jmbi.1994.1198
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this paper we present a self-consistent ensemble optimization (SCEO) theory for efficient conformational search, which we have applied to predicting the effects of mutations on protein thermostability. This approach takes advantage of a statistical mechanical self-consistency condition to home in iteratively on the global minimum structure. We employ a fast potential of mean-force approximation to cut computation time to a few minutes for a typical protein mutation, with only linear time-dependence on the size of the prediction problem. Rather than seeking a single, static structure of minimum energy, the new method optimizes an ensemble of many conformations, seeking to predict the most likely ensemble for the native state at a desired temperature. Testing this approach with a simple physical model focusing entirely on steric interactions and side-chain rearrangement, we obtain robustly convergent prediction of core side-chain conformation, and of hydrophobic core mutations' effects on protein stability. Self-consistent ensemble optimization is superior to simulated annealing in its speed and convergence to the global minimum, and insensitive to starting conformation. In calculations on λ repressor protein, structural predictions for an eight-residue molten-zone had side-chain r.m.s. error of 0.49 Å for the wild-type protein. Evaluation of the method's mutant structure predictions should become possible, as structures of these mutant repressors are solved. Predicted energies for a series of nine hydrophobic core mutants correlated with measured free energies of unfolding with a coefficient of 0.82. © 1994 Academic Press Inc.
引用
收藏
页码:918 / 939
页数:22
相关论文
共 40 条
[1]   HYDROPHOBIC CORE REPACKING AND AROMATIC AROMATIC INTERACTION IN THE THERMOSTABLE MUTANT OF T4 LYSOZYME SER 117-]PHE [J].
ANDERSON, DE ;
HURLEY, JH ;
NICHOLSON, H ;
BAASE, WA ;
MATTHEWS, BW .
PROTEIN SCIENCE, 1993, 2 (08) :1285-1290
[2]   MULTICANONICAL ALGORITHMS FOR 1ST ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICS LETTERS B, 1991, 267 (02) :249-253
[3]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[4]   SURFACE-TENSION OF AMINO-ACID SOLUTIONS - HYDROPHOBICITY SCALE OF AMINO-ACID RESIDUES [J].
BULL, HB ;
BREESE, K .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1974, 161 (02) :665-670
[5]   FREE-ENERGY CALCULATIONS ON BINDING AND CATALYSIS BY ALPHA-LYTIC PROTEASE - THE ROLE OF SUBSTRATE SIZE IN THE P1 POCKET [J].
CALDWELL, JW ;
AGARD, DA ;
KOLLMAN, PA .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1991, 10 (02) :140-148
[6]   A MUTANT T4 LYSOZYME (VAL 131-]ALA) DESIGNED TO INCREASE THERMOSTABILITY BY THE REDUCTION OF STRAIN WITHIN AN ALPHA-HELIX [J].
DAOPIN, S ;
BAASE, WA ;
MATTHEWS, BW .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1990, 7 (02) :198-204
[7]   THE DEAD-END ELIMINATION THEOREM AND ITS USE IN PROTEIN SIDE-CHAIN POSITIONING [J].
DESMET, J ;
DEMAEYER, M ;
HAZES, B ;
LASTERS, I .
NATURE, 1992, 356 (6369) :539-542
[8]   RESPONSE OF A PROTEIN-STRUCTURE TO CAVITY-CREATING MUTATIONS AND ITS RELATION TO THE HYDROPHOBIC EFFECT [J].
ERIKSSON, AE ;
BAASE, WA ;
ZHANG, XJ ;
HEINZ, DW ;
BLABER, M ;
BALDWIN, EP ;
MATTHEWS, BW .
SCIENCE, 1992, 255 (5041) :178-183
[9]   SIMILAR HYDROPHOBIC REPLACEMENTS OF LEU99 AND PHE153 WITHIN THE CORE OF T4-LYSOZYME HAVE DIFFERENT STRUCTURAL AND THERMODYNAMIC CONSEQUENCES [J].
ERIKSSON, AE ;
BAASE, WA ;
MATTHEWS, BW .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 229 (03) :747-769
[10]   A SEARCH FOR THE MOST STABLE FOLDS OF PROTEIN CHAINS [J].
FINKELSTEIN, AV ;
REVA, BA .
NATURE, 1991, 351 (6326) :497-499