LOCAL LYAPUNOV EXPONENTS COMPUTED FROM OBSERVED DATA

被引:122
作者
ABARBANEL, HDI
BROWN, R
KENNEL, MB
机构
[1] UNIV CALIF SAN DIEGO,SCRIPPS INST OCEANOG,DEPT PHYS,LA JOLLA,CA 92093
[2] UNIV CALIF SAN DIEGO,SCRIPPS INST OCEANOG,MARINE PHYS LAB,LA JOLLA,CA 92093
关键词
EXPERIMENTAL CHAOTIC TIME SERIES; LOCAL LYAPUNOV EXPONENTS; GLOBAL PREDICTABILITY; LOCAL PREDICTABILITY OF CHAOS;
D O I
10.1007/BF01208929
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop methods for determining local Lyapunov exponents from observations of a scalar data set. Using average mutual information and the method of false neighbors, we reconstruct a multivariate time series, and then use local polynomial neighborhood-to-neighborhood maps to determine the phase space partial derivatives required to compute Lyapunov exponents. In several examples we demonstrate that the methods allow one to accurately reproduce results determined when the dynamics is known beforehand. We present a new recursive QR decomposition method for finding the eigenvalues of products of matrices when that product is severely ill conditioned, and we give an argument to show that local Lyapunov exponents are ambiguous up to order 1/L in the number of steps due to the choice of coordinate system. Local Lyapunov exponents are the critical element in determining the practical predictability of a chaotic system, so the results here will be of some general use.
引用
收藏
页码:343 / 365
页数:23
相关论文
共 25 条
  • [1] LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS - THEIR IMPORTANCE AND THEIR EVALUATION USING OBSERVED DATA
    ABARBANEL, HDI
    BROWN, R
    KENNEL, MB
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1991, 5 (09): : 1347 - 1375
  • [2] ABARBANEL HDI, 1992, UNPUB J NONLINEA MAY
  • [3] [Anonymous], 1991, J NONLINEAR SCI, DOI [10.1007/BF01209065, DOI 10.1007/BF01209065]
  • [4] COMPUTING THE LYAPUNOV SPECTRUM OF A DYNAMIC SYSTEM FROM AN OBSERVED TIME-SERIES
    BROWN, R
    BRYANT, P
    ABARBANEL, HDI
    [J]. PHYSICAL REVIEW A, 1991, 43 (06): : 2787 - 2806
  • [5] Brown R., 1990, PHYS REV LETT, V65, P1523
  • [6] LIAPUNOV EXPONENTS FROM TIME-SERIES
    ECKMANN, JP
    KAMPHORST, SO
    RUELLE, D
    CILIBERTO, S
    [J]. PHYSICAL REVIEW A, 1986, 34 (06): : 4971 - 4979
  • [7] ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS
    ECKMANN, JP
    RUELLE, D
    [J]. REVIEWS OF MODERN PHYSICS, 1985, 57 (03) : 617 - 656
  • [8] CONVERGENCE-RATES AND DATA REQUIREMENTS FOR JACOBIAN-BASED ESTIMATES OF LYAPUNOV EXPONENTS FROM DATA
    ELLNER, S
    GALLANT, AR
    MCCAFFREY, D
    NYCHKA, D
    [J]. PHYSICS LETTERS A, 1991, 153 (6-7) : 357 - 363
  • [9] FORD JR, 1988, CIC148 LOS AL NAT LA
  • [10] INDEPENDENT COORDINATES FOR STRANGE ATTRACTORS FROM MUTUAL INFORMATION
    FRASER, AM
    SWINNEY, HL
    [J]. PHYSICAL REVIEW A, 1986, 33 (02): : 1134 - 1140