A cost-effective micromilling platform for rapid prototyping of microdevices

被引:24
作者
Yen, Daniel P. [1 ]
Ando, Yuta [1 ]
Shen, Keyue [1 ,2 ]
机构
[1] Univ Southern Calif, Viterbi Sch Engn, Dept Biomed Engn, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Keck Sch Med, Norris Comprehens Canc Ctr, Los Angeles, CA 90033 USA
来源
TECHNOLOGY | 2016年 / 4卷 / 04期
关键词
Micromilling; Rapid Prototyping; Organ-on-a-Chip; Lab-on-a-Chip; Microfluidics; Microdevice;
D O I
10.1142/S2339547816200041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Micromilling has great potential in producing microdevices for lab-on-a-chip and organ-on-a-chip applications, but has remained under-utilized due to the high machinery costs and limited accessibility. In this paper, we assessed the machining capabilities of a low-cost 3-D mill in polycarbonate material, which were showcased by the production of microfluidic devices. The study demonstrates that this particular mill is well suited for the fabrication of multi-scale microdevices with feature sizes from micrometers to centimeters.
引用
收藏
页码:234 / 239
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 2015, PROTOC EXCH, DOI DOI 10.1038/PROTEX.2015.069
[2]   Gradient generation platforms: new directions for an established microfluidic technology [J].
Berthier, E. ;
Beebe, D. J. .
LAB ON A CHIP, 2014, 14 (17) :3241-3247
[3]   Microfluidic organs-on-chips [J].
Bhatia, Sangeeta N. ;
Ingber, Donald E. .
NATURE BIOTECHNOLOGY, 2014, 32 (08) :760-772
[4]   Approaching the in vitro clinical trial: engineering organs on chips [J].
Capulli, A. K. ;
Tian, K. ;
Mehandru, N. ;
Bukhta, A. ;
Choudhury, S. F. ;
Suchyta, M. ;
Parker, K. K. .
LAB ON A CHIP, 2014, 14 (17) :3181-3186
[5]   Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices [J].
Guckenberger, David J. ;
de Groot, Theodorus E. ;
Wan, Alwin M. D. ;
Beebe, David J. ;
Young, Edmond W. K. .
LAB ON A CHIP, 2015, 15 (11) :2364-2378
[6]   From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures [J].
Paguirigan, Amy L. ;
Beebe, David J. .
INTEGRATIVE BIOLOGY, 2009, 1 (02) :182-195
[7]   Effects of channel surface finish on blood flow in microfluidic devices [J].
Prentner, S. ;
Allen, D. M. ;
Larcombe, L. ;
Marson, S. ;
Jenkins, K. ;
Saumer, M. .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2010, 16 (07) :1091-1096
[8]   Biological implications of polydimethylsiloxane-based microfluidic cell culture [J].
Regehr, Keil J. ;
Domenech, Maribella ;
Koepsel, Justin T. ;
Carver, Kristopher C. ;
Ellison-Zelski, Stephanie J. ;
Murphy, William L. ;
Schuler, Linda A. ;
Alarid, Elaine T. ;
Beebe, David J. .
LAB ON A CHIP, 2009, 9 (15) :2132-2139
[9]   Materials for Microfluidic Chip Fabrication [J].
Ren, Kangning ;
Zhou, Jianhua ;
Wu, Hongkai .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (11) :2396-2406
[10]   Microfluidics: Fluid physics at the nanoliter scale [J].
Squires, TM ;
Quake, SR .
REVIEWS OF MODERN PHYSICS, 2005, 77 (03) :977-1026