DYNAMIC EXPONENTS FOR ONE-DIMENSIONAL RANDOM RANDOM DIRECTED WALKS

被引:27
作者
ASLANGUL, C
BARTHELEMY, M
POTTIER, N
STJAMES, D
机构
[1] UNIV PARIS 06,F-75252 PARIS 05,FRANCE
[2] COLL FRANCE,F-75231 PARIS 05,FRANCE
关键词
Brownian motion; disordered media; random walks;
D O I
10.1007/BF01015561
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamical exponents of the coordinate and of the mean square displacement are explicitly calculated in the case of a directed random walk on a one-dimensional random lattice. Moreover, it is shown that, in the dynamical phase where the coordinate increases slower than t, the latter is not a self-averaging quantity. © 1990 Plenum Publishing Corporation.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 10 条
[1]   EXCITATION DYNAMICS IN RANDOM ONE-DIMENSIONAL SYSTEMS [J].
ALEXANDER, S ;
BERNASCONI, J ;
SCHNEIDER, WR ;
ORBACH, R .
REVIEWS OF MODERN PHYSICS, 1981, 53 (02) :175-198
[2]   CORRECTION [J].
ASLANGUL, C .
JOURNAL DE PHYSIQUE, 1989, 50 (12) :1581-1581
[3]   VELOCITY AND DIFFUSION-COEFFICIENT OF A RANDOM ASYMMETRIC ONE-DIMENSIONAL HOPPING MODEL [J].
ASLANGUL, C ;
POTTIER, N ;
SAINTJAMES, D .
JOURNAL DE PHYSIQUE, 1989, 50 (08) :899-921
[4]  
ASLANGUL C, IN PRESS PHYSICA A
[5]  
ASLANGUL C, 1989, J STAT PHYS, V55, P1065
[6]  
BERNASCONI J, 1986, FRACTALS PHYSICS
[7]  
BOUCHAUD JP, UNPUB ANN PHYS
[8]  
BOUCHAUD JP, UNPUB PHYS REP
[10]  
Gardiner C.W., 1985, HDB STOCHASTIC METHO