ON LEHMERS METHOD FOR FINDING ZEROS OF A POLYNOMIAL

被引:12
作者
STEWART, GW
机构
[1] University of Texas, Department of Computer Sciences, Austin, TX
关键词
D O I
10.1090/S0025-5718-1969-0266425-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:829 / &
相关论文
共 50 条
[41]   ON THE ZEROS OF A POLYNOMIAL [J].
ALZER, H .
JOURNAL OF APPROXIMATION THEORY, 1995, 81 (03) :421-424
[42]   Computer methodologies for comparison of computational efficiency of simultaneous methods for finding polynomial zeros [J].
Petkovic, I. ;
Herceg, D. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368
[43]   A new fourth-order family of simultaneous methods for finding polynomial zeros [J].
Petkovic, MS ;
Rancic, L .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 164 (01) :227-248
[44]   ON THE R-ORDER OF SOME ACCELERATED METHODS FOR THE SIMULTANEOUS FINDING OF POLYNOMIAL ZEROS [J].
PETKOVIC, MS ;
STEFANOVIC, LV ;
MARJANOVIC, ZM .
COMPUTING, 1993, 49 (04) :349-361
[45]   Some simultaneous iterations for finding all zeros of a polynomial with high order convergence [J].
Zheng, SM ;
Sun, FY .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (2-3) :233-240
[46]   A Competition Model Based on Natural Tree Growth for Finding All Zeros of a Polynomial [J].
Guo, Gaiwen ;
Zhao, Bing ;
Lai, Qingmin ;
Huang, Kama .
2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, :7017-+
[48]   Some simultaneous iterations for finding all zeros of a polynomial with high order convergence [J].
Zheng, Shiming ;
Sun, Fangyu .
Applied Mathematics and Computation (New York), 1999, 99 (2-3) :233-240
[49]   Finding all real zeros of polynomial systems using multi-resultant [J].
Syam, MI .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (02) :417-428
[50]   CONVERGENCE OF THE WEIERSTRASS METHOD FOR SIMULTANEOUS APPROXIMATION OF POLYNOMIAL ZEROS [J].
Proinov, Petko D. ;
Petkova, Milena D. .
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2013, 66 (06) :809-818