ENERGY-SPECTRUM OF THE POTENTIAL V = AX2 + X4

被引:15
作者
CHHAJLANY, SC
LETOV, DA
MALNEV, VN
机构
[1] MOSCOW PEOPLES FRIENDSHIP UNIV,DEPT GEN PHYS,MOSCOW,USSR
[2] TG SHEVCHENKO STATE UNIV,DEPT PHYS,KIEV,UKRAINE,USSR
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 12期
关键词
D O I
10.1088/0305-4470/24/12/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Suitable sequences of quasi-exactly solvable Hamiltonians are shown to provide stringent upper bounds to the energy eigenvalues of the bound state potential V = ax2 + x4. Procedures to convert these bounds into even further improved energy estimates are developed. For the quartic anharmonic oscillator (a > 0) case a simple argument is provided to indicate that the conventional small-parameter energy expansion does not converge as a Taylor series. An accurate closed-form parametrization of the entire quartic (a = 0) spectrum is noted. The energy difference between the lowest-lying levels of a quartic double well (a < 0) is satisfactorily recovered and for deep wells a useful expression is deduced for it empirically.
引用
收藏
页码:2731 / 2741
页数:11
相关论文
共 23 条
  • [1] ANHARMONIC-OSCILLATOR
    BANERJEE, K
    BHATNAGAR, SP
    CHOUDHRY, V
    KANWAL, SS
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 360 (1703) : 575 - 586
  • [2] LOWER BOUNDS FOR EIGENVALUES OF SCHRODINGERS EQUATION
    BAZLEY, NW
    FOX, DW
    [J]. PHYSICAL REVIEW, 1961, 124 (02): : 483 - &
  • [3] ANHARMONIC OSCILLATOR
    BENDER, CM
    WU, TT
    [J]. PHYSICAL REVIEW, 1969, 184 (05): : 1231 - &
  • [4] HYDROGENIC ATOMS IN THE EXTERNAL POTENTIAL V(R)=GR+LAMBDA-R(2) - EXACT-SOLUTIONS AND GROUND-STATE EIGENVALUE BOUNDS USING MOMENT METHODS
    BESSIS, D
    VRSCAY, ER
    HANDY, CR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (02): : 419 - 428
  • [5] EIGENVALUES OF LAMBDA X2M ANHARMONIC OSCILLATORS
    BISWAS, SN
    DATTA, K
    SAXENA, RP
    SRIVASTAVA, PK
    VARMA, VS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) : 1190 - 1195
  • [6] SIMPLE EXAMPLES IN SINGULAR PERTURBATION-THEORY - EIGENVALUES THAT DO NOT TEND TO THE UNPERTURBED VALUES AS THE PERTURBATION IS SWITCHED OFF
    CALOGERO, F
    [J]. LETTERE AL NUOVO CIMENTO, 1979, 25 (17): : 533 - 538
  • [7] BOUND-STATES OF ANHARMONIC POTENTIALS
    CHHAJLANY, SC
    MALNEV, VN
    [J]. PHYSICAL REVIEW A, 1990, 42 (05): : 3111 - 3114
  • [8] CHHAJLANY SC, 1991, PHYS REV A, V43, P581
  • [9] EXACT ANALYTIC SOLUTIONS FOR THE QUANTUM-MECHANICAL SEXTIC ANHARMONIC-OSCILLATOR
    DUTTA, AK
    WILLEY, RS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (04) : 892 - 900
  • [10] TIGHT UPPER AND LOWER BOUNDS FOR ENERGY EIGENVALUES OF THE SCHRODINGER-EQUATION
    FERNANDEZ, FM
    MA, Q
    TIPPING, RH
    [J]. PHYSICAL REVIEW A, 1989, 39 (04): : 1605 - 1609