Solidity and some double sequence spaces

被引:0
|
作者
Subramanian, N. [1 ,2 ]
Thirunavakarasu, P. [1 ,2 ]
机构
[1] SASTRA Univ, Dept Math, Thanjavur 613401, India
[2] Periyar EVR Coll, PG & Res Dept Math, Tiruchirappalli 620023, India
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2012年 / 30卷 / 01期
关键词
entire sequence; analytic sequence; double sequence;
D O I
10.5269/bspm.v30i1.13014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the solidity (normality) of the sequence spaces c(A)(2), l(A)(2), Lambda(2)(A) and Gamma(2)A.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 50 条
  • [21] THE chi(2) SEQUENCE SPACES DEFINED BY A MODULUS
    Subramanian, Nagarajan
    Misra, Umakanta
    Rakocevic, Vladimir
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2011, 35 (01): : 39 - 57
  • [22] Sequence spaces M(φ) and N(φ) with application in clustering
    Khan, Mohd Shoaib
    Alamri, Badriah A. S.
    Mursaleen, M.
    Lohani, Q. M. Danish
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [23] An example of a positive semidefinite double sequence which is not a moment sequence
    Bisgaard, TM
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2004, 54 (02) : 273 - 277
  • [24] An Example of a Positive Semidefinite Double Sequence Which is Not a Moment Sequence
    Torben Maack Bisgaard
    Czechoslovak Mathematical Journal, 2004, 54 : 273 - 277
  • [25] The generalized χ 2 sequence spaces over p- metric spaces defined by Musielak
    Nagarajan S.
    Nallswamy S.
    Subramanian V.
    Mathematical Sciences, 2013, 7 (1)
  • [26] The core of a double sequence of fuzzy numbers
    Talo, Ozer
    FUZZY SETS AND SYSTEMS, 2021, 424 (424) : 132 - 154
  • [27] Riesz Almost Lacunary Triple Sequence Spaces Of Γ3 Defined By a Musielak-Orlicz Function
    Subramanian, N.
    Rajagopal, N.
    Thirunavukarasu, P.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (04): : 47 - 59
  • [28] ON QUASI ALMOST LACUNARY STRONG CONVERGENCE DIFFERENCE SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULI
    Khan, Vakeel A.
    Lohani, Q. M. Danish
    MATEMATICKI VESNIK, 2008, 60 (02): : 95 - 100
  • [29] THE CESAR chi(2) SEQUENCE SPACES DEFINED BY A MODULUS
    Subramanian, N.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2012, 81 (01): : 89 - 103
  • [30] The Generalized Non-absolute type of sequence spaces
    Subramanian, N.
    Bivin, M. R.
    Saivaraju, N.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2016, 34 (02): : 263 - 274