ON SETS NONMEASURABLE WITH RESPECT TO INVARIANT-MEASURES

被引:6
作者
SOLECKI, S [1 ]
机构
[1] UNIV WROCLAW,INST MATH,PL-50384 WROCLAW,POLAND
关键词
INVARIANT MEASURES; NONMEASURABLE SETS; EXTENSIONS OF MEASURES;
D O I
10.2307/2159832
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A group G acts on a set X, and mu is a G-invariant measure on X. Under certain assumptions on the action of G and on mu (e.g., G acts freely and is uncountable, and mu is sigma-finite), we prove that each set of positive mu-measure contains a subset nonmeasurable with respect to any invariant extensions of mu. We study the case of ergodic measures in greater detail.
引用
收藏
页码:115 / 124
页数:10
相关论文
共 9 条
[1]   2 PRINCIPLES FOR EXTENDING PROBABILITY MEASURES [J].
ASCHERL, A ;
LEHN, J .
MANUSCRIPTA MATHEMATICA, 1977, 21 (01) :43-50
[2]  
Engelking R, 1977, MATH MONOGRAPHS, V60
[3]   NONEXISTENCE OF CERTAIN INVARIANT MEASURES [J].
ERDOS, P ;
MAULDIN, RD .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 59 (02) :321-322
[4]  
Halmos P.R., 1950, MEASURE THEORY
[5]  
HARAZISVILI AB, 1975, DOKL AN SSRR, V222, P538
[6]  
PELC A, 1986, DISSERATATIONES MATH, V255
[7]  
RYLLNARDZEWSKI C, 1978, P AM MATH SOC, V69, P240
[8]  
ZAKRZEWSKI P, 1987, P AM MATH SOC, V99, P507
[9]  
[No title captured]