INHOMOGENEOUS QUANTUM GROUPS AS SYMMETRIES OF PHONONS

被引:44
作者
BONECHI, F
CELEGHINI, E
GIACHETTI, R
SORACE, E
TARLINI, M
机构
[1] IST NAZL FIS NUCL,FLORENCE,ITALY
[2] UNIV BOLOGNA,DIPARTIMENTO MATEMAT,I-40126 BOLOGNA,ITALY
关键词
D O I
10.1103/PhysRevLett.68.3718
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum-deformed (1 + 1) Poincare algebra is shown to be the kinematical symmetry of the harmonic chain, whose spacing is given by the deformation parameter. Phonons with their symmetries as well as multiphonon processes are derived from the quantum group structure. Inhomogeneous quantum groups are thus proposed as kinematical invariances of discrete systems.
引用
收藏
页码:3718 / 3720
页数:3
相关论文
共 9 条
  • [1] THE Q-DIFFERENCE OPERATOR, THE QUANTUM HYPERPLANE, HILBERT-SPACES OF ANALYTIC-FUNCTIONS AND Q-OSCILLATORS
    ARIK, M
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1991, 51 (04): : 627 - 632
  • [2] THE QUANTUM HEISENBERG-GROUP H(1)Q
    CELEGHINI, E
    GIACHETTI, R
    SORACE, E
    TARLINI, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) : 1155 - 1158
  • [3] 3-DIMENSIONAL QUANTUM GROUPS FROM CONTRACTIONS OF SU(2)Q
    CELEGHINI, E
    GIACHETTI, R
    SORACE, E
    TARLINI, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) : 2548 - 2551
  • [4] THE 3-DIMENSIONAL EUCLIDEAN QUANTUM GROUP E(3)Q AND ITS R-MATRIX
    CELEGHINI, E
    GIACHETTI, R
    SORACE, E
    TARLINI, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) : 1159 - 1165
  • [5] Drinfeld V.G., 1986, P INT C MATH, V1, P789
  • [6] Faddeev L. D, 1988, ALGEBRAIC ANAL, P129
  • [7] ON THE Q-OSCILLATOR AND THE QUANTUM ALGEBRA SUQ (1,1)
    KULISH, PP
    DAMASKINSKY, EV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (09): : L415 - L419
  • [8] Q-DEFORMATION OF POINCARE ALGEBRA
    LUKIERSKI, J
    RUEGG, H
    NOWICKI, A
    TOLSTOY, VN
    [J]. PHYSICS LETTERS B, 1991, 264 (3-4) : 331 - 338
  • [9] [No title captured]