HAMILTON-JACOBI EQUATIONS IN THE WASSERSTEIN SPACE

被引:0
作者
Gangbo, Wilfrid [1 ]
Truyen Nguyen [2 ]
Tudorascu, Adrian [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Akron, Dept Theoret & Appl Math, Akron, OH 44325 USA
关键词
Hamilton-Jacobi equations in infinite dimension; viscosity solutions; mass transfer; Wasserstein metric;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a concept of viscosity solutions for Hamilton-Jacobi equations (HJE) in the Wasserstein space. We prove existence of solutions for the Cauchy problem for certain Hamiltonians defined on the Wasserstein space over the real line. In order to illustrate the link between HJE in the Wasserstein space and Fluid Mechanics, in the last part of the paper we focus on a special Hamiltonian. The characteristics for these HJE are solutions of physical systems in finite dimensional spaces.
引用
收藏
页码:155 / 183
页数:29
相关论文
共 12 条
[1]  
Ambrosio L., 2005, LECT MATH ETH ZURICH
[2]  
Ambrosio L., PREPRINT
[3]   Hamiltonian ODEs in the wasserstein space of probability measures [J].
Ambrosio, Luigi ;
Gangbo, Wilfred .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (01) :18-53
[4]  
Barbu V., 1983, HAMILTON JACOBI EQUA
[5]  
Barbu V., 1984, HAMILTON JACOBI EQUA
[6]   HAMILTON-JACOBI EQUATIONS IN INFINITE DIMENSIONS .1. UNIQUENESS OF VISCOSITY SOLUTIONS [J].
CRANDALL, MG ;
LIONS, PL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (03) :379-396
[7]   HAMILTON-JACOBI EQUATIONS IN INFINITE DIMENSIONS .2. EXISTENCE OF VISCOSITY SOLUTIONS [J].
CRANDALL, MG ;
LIONS, PL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 65 (03) :368-405
[8]   The semigeostrophic equations discretized in reference and dual variables [J].
Cullen, Mike ;
Gangbo, Wilfrid ;
Pisante, Giovanni .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 185 (02) :341-363
[9]  
Gangbo W., 2008, ARCH RAT MECH ANAL
[10]  
Nguyen T., 2008, SIAM J MATH ANAL