BOUNDARY-BEHAVIOR OF HARMONIC MAPS ON NONSMOOTH DOMAINS AND COMPLETE NEGATIVELY CURVED MANIFOLDS

被引:26
作者
AVILES, P
CHOI, H
MICALLEF, M
机构
[1] UNIV IOWA,DEPT MATH,IOWA CITY,IA 52242
[2] UNIV WARWICK,DEPT MATH,COVENTRY CV4 7AL,W MIDLANDS,ENGLAND
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-1236(91)90043-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we develop a theory for harmonic maps which is analogous to the classical theory for bounded harmonic functions in harmonic analysis. We solve the Dirichlet problem in bounded Lipschitz domains and manifolds with negative sectional curvatures, generalize the Wienner criterion, and prove the Fatou theorem for harmonic maps into convex balls. © 1991.
引用
收藏
页码:293 / 331
页数:39
相关论文
共 28 条
[1]   NEGATIVELY CURVED MANIFOLDS, ELLIPTIC-OPERATORS, AND THE MARTIN BOUNDARY [J].
ANCONA, A .
ANNALS OF MATHEMATICS, 1987, 125 (03) :495-536
[2]   POSITIVE HARMONIC-FUNCTIONS ON COMPLETE MANIFOLDS OF NEGATIVE CURVATURE [J].
ANDERSON, MT ;
SCHOEN, R .
ANNALS OF MATHEMATICS, 1985, 121 (03) :429-461
[3]  
ANDERSON MT, 1983, J DIFFER GEOM, V18, P701
[4]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[5]   BOUNDARY-BEHAVIOR OF NONNEGATIVE SOLUTIONS OF ELLIPTIC-OPERATORS IN DIVERGENCE FORM [J].
CAFFARELLI, L ;
FABES, E ;
MORTOLA, S ;
SALSA, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :621-640
[6]   COMPLETELY SINGULAR ELLIPTIC-HARMONIC MEASURES [J].
CAFFARELLI, LA ;
FABES, EB ;
KENIG, CE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (06) :917-924
[7]   ON THE LIOUVILLE THEOREM FOR HARMONIC MAPS [J].
CHOI, HI .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 85 (01) :91-94
[8]  
DAHLBERG B, 1975, INDIANA U MATH J, V27, P515
[9]  
DOOB JL, 1984, GRUND MATH, V262
[10]  
Eells J., 1983, AM MATH SOC, V1983, P76