IDENTIFICATION AND ESTIMATION OF POLYNOMIAL ERRORS-IN-VARIABLES MODELS

被引:86
作者
HAUSMAN, JA
NEWEY, WK
ICHIMURA, H
POWELL, JL
机构
[1] UNIV MINNESOTA,MINNEAPOLIS,MN 55455
[2] UNIV WISCONSIN,MADISON,WI 53706
基金
美国国家科学基金会;
关键词
D O I
10.1016/0304-4076(91)90022-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
Methods of estimation of regression coefficients are proposed when the regression function includes a polynomial in a 'true' regressor which is measured with error. Two sources of additional information concerning the unobservable regressor are considered: either an additional indicator of the regressor (itself measured with error) or instrumental variables which characterize the systematic variation in the true regressor. In both cases, estimators are constructed by relating moments involving the unobserved variables to moments of observables; these relations lead to recursion formulae for computation of the regression coefficients and nuisance parameters (e.g., moments of the measurement error). Consistency and asymptotic normality of the estimated coefficients is demonstrated, and consistent estimators of the asymptotic covariant matrices are provided.
引用
收藏
页码:273 / 295
页数:23
相关论文
共 13 条
[1]  
Amemiya T., 1974, J EC, V2, P105
[2]   INSTRUMENTAL VARIABLE ESTIMATOR FOR THE NONLINEAR ERRORS-IN-VARIABLES MODEL [J].
AMEMIYA, Y .
JOURNAL OF ECONOMETRICS, 1985, 28 (03) :273-289
[3]   MAXIMUM LIKELIHOOD ESTIMATION OF GENERAL NONLINEAR FUNCTIONAL RELATIONSHIP WITH REPLICATED OBSERVATIONS AND CORRELATED ERRORS [J].
DOLBY, GR ;
LIPTON, S .
BIOMETRIKA, 1972, 59 (01) :121-129
[4]   ERROR-IN-VARIABLES BIAS IN NONLINEAR CONTEXTS [J].
GRILICHES, Z ;
RINGSTAD, V .
ECONOMETRICA, 1970, 38 (02) :368-+
[5]  
HAUSMAN JA, 1988, 504MIT DEP EC WORK P
[6]  
HAUSMAN JA, 1987, UNPUB CONSISTENT EST
[7]  
KENDALL MG, 1961, ADV THEORY STATISTIC, V2
[8]  
NEWEY WK, 1984, ECON LETT, V14, P201, DOI 10.1016/0165-1765(84)90083-1
[9]  
NEYMAN J, 1948, ECONOMETRICA, V38, P368
[10]  
POWELL JL, 1986, J ECONOMETRICS, V30, P317