THE KORTEWEG-DEVRIES HIERARCHY AS DYNAMICS OF CLOSED CURVES IN THE PLANE

被引:239
作者
GOLDSTEIN, RE
PETRICH, DM
机构
[1] Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton
关键词
D O I
10.1103/PhysRevLett.67.3203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Korteweg-de Vries, modified Korteweg-de Vries, and Harry Dym hierarchies of integrable systems are shown to be equivalent to a hierarchy of chiral shape dynamics of closed curves in the plane. These purely local dynamics conserve an infinite number of global geometric properties of the curves, such as perimeter and enclosed area Several techniques used to study these integrable systems are shown to have simple differential-geometric interpretations. Connections with incompressible, inviscid fluid flow in two dimensions are suggested.
引用
收藏
页码:3203 / 3206
页数:4
相关论文
共 31 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   GEOMETRIC PHASE IN THE CLASSICAL CONTINUOUS ANTIFERROMAGNETIC HEISENBERG SPIN CHAIN [J].
BALAKRISHNAN, R ;
BISHOP, AR ;
DANDOLOFF, R .
PHYSICAL REVIEW LETTERS, 1990, 64 (18) :2107-2110
[3]   NONLOCAL MAPS [J].
BERRY, MV ;
INDEKEU, JO ;
TABOR, M ;
BALAZS, NL .
PHYSICA D, 1984, 11 (1-2) :1-24
[4]   GEOMETRICAL MODELS OF INTERFACE EVOLUTION [J].
BROWER, RC ;
KESSLER, DA ;
KOPLIK, J ;
LEVINE, H .
PHYSICAL REVIEW A, 1984, 29 (03) :1335-1342
[5]   LIE GROUPS AND KDV EQUATIONS [J].
CHERN, S ;
PENG, C .
MANUSCRIPTA MATHEMATICA, 1979, 28 (1-3) :207-217
[6]   DYNAMICS OF A COMPLEX INTERFACE [J].
CONSTANTIN, P ;
KADANOFF, L .
PHYSICA D, 1991, 47 (03) :450-460
[7]  
Das A., 1989, INTEGRABLE MODELS, DOI DOI 10.1142/0858
[8]  
Distler J., COMMUNICATION
[9]  
Drazin PG, 1989, SOLITONS INTRO