Modelling of antimonate capacity in copper and nickel smelting slags

被引:5
|
作者
Font, J. M. [1 ]
Reddy, R. G. [2 ]
机构
[1] Institute Innovat Mining & Met, Dept Met & Mat Engn, Rancagua, Chile
[2] Univ Alabama, Tuscaloosa, AL 35487 USA
来源
TRANSACTIONS OF THE INSTITUTIONS OF MINING AND METALLURGY SECTION C-MINERAL PROCESSING AND EXTRACTIVE METALLURGY | 2005年 / 114卷 / 03期
关键词
Slags; copper and nickel smelting; impurity; and antimonate capacity;
D O I
10.1179/037195505X63349
中图分类号
TD [矿业工程];
学科分类号
0819 ;
摘要
The thermodynamic Reddy-Blander (RB) model was extended for deriving antimonate capacity and antimony distribution ratio between the slag and the copper and nickel matte a priori. In this study, the antimonate capacities in the FeO-FeO1.5-MgO-NiO-SiO2, FeO-FeO1.5-MgO-CuO0.5SiO2 and FeO-FeO1.5-MgO-NiO-CaO systems and the antimony distribution ratio for the FeO-FeO1.5-MgONiO-SiO2 slag/Ni matte, FeO-FeO1.5-MgO-CuO0.5-SiO2 slag/Cu matte and FeO-FeO1.5-MgO-NiO-CaO/Ni matte equilibrium systems were evaluated at 1523 K and 1573 K. In general, good agreement was found between the calculated RB model data and the reported experimental data for both antimonate capacity and antimony distribution ratio. The antimony distribution ratio model developed here can be extended for prediction in multicomponent base metal slags and copper and nickel mattes and, thereby, may lead to develop and/or improve the efficiency of antimony removal from the base metal smelting, converting and refining processes.
引用
收藏
页码:160 / 164
页数:5
相关论文
共 50 条
  • [21] Physical chemistry of copper smelting slags and copper losses at the Paipote smelter Part 1-Thermodynamic modelling
    Cardona, N.
    Coursol, P.
    Mackey, P. J.
    Parra, R.
    CANADIAN METALLURGICAL QUARTERLY, 2011, 50 (04) : 318 - 329
  • [22] Liquidus temperatures of ferro-nickel smelting slags
    Chen, SQ
    Erasmus, L
    Barnett, SCC
    Jak, E
    Hayes, PC
    INTERNATIONAL LATERITE NICKEL SYMPOSIUM-2004, 2004, : 503 - 518
  • [23] Breakdown of copper-smelting slags with ammonium chloride
    A. N. D’yachenko
    R. I. Kraidenko
    E. B. Poryvai
    S. N. Chegrintsev
    Russian Journal of Non-Ferrous Metals, 2013, 54 : 425 - 428
  • [24] Arsenic capacity of copper slags
    Font, JC
    Reddy, RG
    ARSENIC METALLURGY, 2005, : 51 - 60
  • [25] THE PHYSICAL-CHEMISTRY OF COPPER SMELTING SLAGS - A REVIEW
    MACKEY, PJ
    CANADIAN METALLURGICAL QUARTERLY, 1982, 21 (03) : 221 - 260
  • [26] Response characteristics of iron smelting reduction of copper slags
    Li, L.
    Wang, H.
    MATERIALS RESEARCH INNOVATIONS, 2015, 19 : 469 - 473
  • [27] Recovery of iron from copper flash smelting slags
    Busolic, D.
    Parada, F.
    Parra, R.
    Sanchez, M.
    Palacios, J.
    Hino, M.
    TRANSACTIONS OF THE INSTITUTIONS OF MINING AND METALLURGY SECTION C-MINERAL PROCESSING AND EXTRACTIVE METALLURGY, 2011, 120 (01): : 32 - 36
  • [28] Effect of the oxygen potential on the viscosity of copper smelting slags
    Kongoli, F
    McBow, I
    Llubani, S
    METALLURGICAL AND MATERIALS PROCESSING: PRINCIPLES AND TECHNOLOGIES, VOL 2: HIGH-TEMPERATURE METAL PRODUCTION, 2003, : 305 - 316
  • [29] Slag Chemistry and Behavior of Nickel and Tin in Black Copper Smelting with Alumina and Magnesia-Containing Slags
    Anna Dańczak
    Lassi Klemettinen
    Hugh O’Brien
    Pekka Taskinen
    Daniel Lindberg
    Ari Jokilaakso
    Journal of Sustainable Metallurgy, 2021, 7 : 1 - 14
  • [30] Crystallization ability of glasses based on slags from the joint smelting of silicate nickel and copper pyrite ores
    Klyushnikov, Alexander
    Gulyaeva, Roza
    Sergeeva, Svetlana
    Agafonov, Sergey
    Cherepanova, Lyubov
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (11) : 5265 - 5284