FAST DIFFUSION NONLINEAR HEAT-EQUATIONS AND A RELATED SINGULAR ELLIPTIC PROBLEM

被引:23
作者
DASKALOPOULOS, P [1 ]
DELPINO, MA [1 ]
机构
[1] UNIV CHICAGO,DEPT MATH,CHICAGO,IL 60637
关键词
D O I
10.1512/iumj.1994.43.43030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide necessary conditions on u(0) for the solvability of the problem. partial derivative u/partial derivative t = div (u(m-1)del u) in R(N) X (0,T), u(x,0) = u(0)(x) in R(N), where T > 0, m < min{0,(N - 2)/N} or m = 0, N = 2. We also find both, necessary and sufficient conditions for the solvability of the elliptic problem Delta u + u(-nu) = f(x), x is an element of R(N), where nu > 0, N greater than or equal to 2, which is obtained by discretization of the parabolic problem when nu = -1/m.
引用
收藏
页码:703 / 728
页数:26
相关论文
共 22 条
[1]  
ARONSON DG, 1983, T AM MATH SOC, V280, P351, DOI 10.2307/1999618
[2]   SOLUTIONS OF THE POROUS-MEDIUM EQUATION IN RN UNDER OPTIMAL CONDITIONS ON INITIAL VALUES [J].
BENILAN, P ;
CRANDALL, MG ;
PIERRE, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (01) :51-87
[3]   ASYMPTOTIC-BEHAVIOR OF THE NON-LINEAR DIFFUSION EQUATION NT = (N-1NX)X [J].
BERRYMAN, JG ;
HOLLAND, CJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (06) :983-987
[4]   ON THE REMARKABLE NON-LINEAR DIFFUSION EQUATION (DELTA-DELTA-X)(A(U+B)-2(DELTA-U-DELTA-X))-(DELTA-U-DELTA-T) = 0 [J].
BLUMAN, G ;
KUMEI, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1019-1023
[5]  
BREZIS H, 1983, J MATH PURE APPL, V62, P73
[6]   ON SINGULAR DIFFUSION-EQUATIONS WITH APPLICATIONS TO SELF-ORGANIZED CRITICALITY [J].
CHAYES, JT ;
OSHER, SJ ;
RALSTON, JV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (10) :1363-1377
[7]  
Crandall M.G., 1977, COMMUN PART DIFFER E, V2, P193
[8]  
CRANDALL MG, 1976, INT S DYN SYST NEW Y, P131
[9]  
Dahlberg B.E.J., 1988, REV MAT IBEROAM, V4, P11
[10]   NON-NEGATIVE SOLUTIONS OF THE POROUS-MEDIUM EQUATION [J].
DAHLBERG, BEJ ;
KENIG, CE .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (05) :409-437